We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2020 was released on November 11th 2020. Its digital version will be available on December 2nd 2020.

Topic: Electrical switchboards and switchboard technology

Innovation, Technology, Projects
New energy law: an opportunity for energetics community
Data centres – third session
Starting October, REMA raises financial subsidy for recycling electrical devices

SVĚTLO (Light) 4-5/2020 was released on September 18th 2020. Its digital version will be available immediately.

Optical radiation effects and use
Plants and light in biofil interior – Part 12
Plants and lights in public areas
Melanopic day illuminance in buildings

Fairs and exhibitions
FOR INTERIOR 2020: Inspiration for habitation and trends of furniture and interiors world

New graphene-based device is first step toward ultrasensitive biosensors

8. 3. 2019 | University of Minnesota | cse.umn.edu

Researchers in the University of Minnesota College of Science and Engineering have developed a unique new device using the wonder material graphene that provides the first step toward ultrasensitive biosensors to detect diseases at the molecular level with near perfect efficiency.

Ultrasensitive biosensors for probing protein structures could greatly improve the depth of diagnosis for a wide variety of diseases extending to both humans and animals. These include Alzheimer’s disease, Chronic Wasting Disease, and mad cow disease—disorders related to protein misfolding. Such biosensors could also lead to improved technologies for developing new pharmaceutical compounds.

Ultrasensitive biosensors

In this new study, University of Minnesota researchers combined graphene with nano-sized metal ribbons of gold. Using sticky tape and a high-tech nanofabrication technique developed at the University of Minnesota, called “template stripping,” researchers were able to create an ultra-flat base layer surface for the graphene.

Read more at University of Minnesota

Image Credit: Oh Group, University of Minnesota

-jk-