We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 4-5/2020 was released on May 6th 2020. Its digital version will be available immediately.

Topic: Electroinstallation; Lightning and overvoltage protection

Energy law novel: An end to energy scammers

SVĚTLO (Light) 2/2020 was released on March 6th 2020. Its digital version will be available immediately.

Market, business, enterprise
BOOBA in new showroom, which surpassed all expectations
Discourse with Technology of Capital city Prague chairman of management

Day light
Diagram of overshadow for 21st march
Modern methods of gaining dates for processing lighting technology assessment

New flexible piezoelectric composite for 3-D printing

29. 4. 2020 | Tech Xplore | www.techxplore.com

Researchers at Peking University, Southern University of Science and Technology and the University of Jinan in China have recently designed a ceramic-polymer composite that can be used to print complex 3-D grid architectures. This composite, first presented in a paper published in Nano Energy, was found to exhibit a number of desirable properties, including high flexibility and a high electromechanical energy conversion rate.

Piezoelectric ceramic materials, such as Pb(Zr,Ti)O3 (PZT) typically have remarkable electromechanical energy conversion capabilities. However, most of these materials are inherently rigid, which makes them far from ideal for the fabrication of flexible electronics.

New composite for 3D printing

The material created by Dong and his colleagues is comprised of a polydimethylsiloxane (PDMS) elastomeric matrix doped with silver-coated PNN-PZT ceramic particles. Its design and composition differ substantially from those of other piezoelectric ceramic materials designed in the past. The new piezoelectric ceramic material is also far easier to produce, as more conventional piezoelectric ceramic materials typically require time-consuming, high-temperature sintering fabrication methods or expensive laser 3-D printing processes involving a technique called stereolithography. Its unique design and fabrication process ultimately make it far more flexible than similar materials developed in the past, giving it elastic properties.

Read more at Tech Xplore

Image Credit: Peking University