We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 5/2019 was released on May 15th 2019. Its digital version will be available imediately.

Topic: Lightning and overvoltage protection; Fire and safety technologies

Main Article
Verification of material coefficient defined in the standard STN EN 62305-3
Smart Cities (final part 10)

SVĚTLO (Light) 2/2019 was released on March 15th 2019. Its digital version will be available immediately.

Architectural and scenic lighting
The architectural lighting of Bečov nad Teplou castle
Lighting design in a nutshell – Part 41
The analyse of light picture a little more theoretic

Day light
Biggest mistakes in day lighting design of buildings

New competing state of matter in superconducting material

04.01.2019 | Ames Laboratory | www.ameslab.gov

A team of experimentalists at the U.S. Department of Energy’s Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster,” said Jigang Wang, Ames Laboratory physicist and Iowa State University professor. “One of the big problems we are trying to solve is how different states in a material compete for those electrons, and how to balance competition and cooperation to increase temperature at which a superconducting state emerges.”

New state of matter

To get a closer look, Wang and his team used laser pulses of less than a trillionth of a second in much the same way as flash photography, in order to take a series of snapshots. Called terahertz spectroscopy, this technique can be thought of as “laser strobe photography” where many quick images reveal the subtle movement of electron pairings inside the materials using long wavelength far-infrared light.

Read more at Ames Laboratory

Image Credit: Ames Laboratory

-jk-