We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2016 was released on December 7th 2016. Its digital version will be available on January 6th 2017.

 

Topic: Measurement, measuring devices and measurement engineering; Testing and diagnostics

 

Main Article

Lithium traction batteries for electric mobility (final part 2)

SVĚTLO (Light) 6/2016 was released on December 5th 2016. Its digital version will be available on January 5th 2017.

Interiors lighting
Colloquium Interiors 2016 – the fifth anniversary
Cooperation of indoor interior and lighting 

Standards, regulations and recommendations
New standards for road lighting

New algorithm enables MIT cheetah robot to run and jump, untethered, across grass

19.09.2014 | |

Speed and agility are hallmarks of the cheetah: The big predator is the fastest land animal on Earth, able to accelerate to 60 mph in just a few seconds. As itramps up to top speed, a cheetah pumps its legs in tandem, bounding until it reaches a full gallop. Now MIT researchers have developed an algorithm for bounding that they’ve successfully implemented in a robotic cheetah — a sleek, four-legged assemblage of gears, batteries, and electric motors that weighs about as much as its feline counterpart. The team recently took the robot for a test run on MIT’s Killian Court, where it bounded across the grass at a steady clip.

In experiments on an indoor track, the robot sprinted up to 10 mph, even continuing to run after clearing a hurdle. The MIT researchers estimate that the current version of the robot may eventually reach speeds of up to 30 mph. The key to the bounding algorithm is in programming each of the robot’s legs to exert a certain amount of force in the split second during which it hits the ground, in order to maintain a given speed: In general, the faster the desired speed, the more force must be applied to propel the robot forward. Sangbae Kim, an associate professor of mechanical engineering at MIT, hypothesizes that this force-control approach to robotic running is similar, in principle, to the way world-class sprinters race.

Read more at mit.edu