We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2020 was released on June 24th 2020. Its digital version will be available on July 24th 2020.

Topic: Cables, conductors and cable engineering

Main Article
New traction power supply technology 25 kV/50 Hz (part 2)

SVĚTLO (Light) 3/2020 was released on June 8th 2020. Its digital version will be available on July 8th 2020.

Professional organizations activities
Announcement: LUMEN V4 2020 is cancelled
What is new in CIE, April 2020

Accessories of lighting installations
Foxtrot as a “Master Control” in Hotel Breukelen
Lighting regulators – control of lighting on the constant level

New 3-D printing approach makes cell-scale lattice structures

27. 3. 2019 | MIT | www.mit.edu

A new way of making scaffolding for biological cultures could make it possible to grow cells that are highly uniform in shape and size, and potentially with certain functions. The new approach uses an extremely fine-scale form of 3-D printing, using an electric field to draw fibers one-tenth the width of a human hair.

Many functions of a cell can be influenced by its microenvironment, so a scaffold that allows precise control over that environment may open new possibilities for culturing cells with particular characteristics, for research or eventually even medical use.

3D printing for cells

While ordinary 3-D printing produces filaments as fine as 150 microns (millionths of a meter), researchers say, it’s possible to get fibers down to widths of 10 microns by adding a strong electric field between the nozzle extruding the fiber and the stage on which the structure is being printed. The technique is called melt electrowriting.

Read more at MIT

Image Credit: Eli Gershenfeld

-jk-