We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 6/2020 was released on June 6th 2020. Its digital version will be available on June 24th 2020.

Topic: Electrical machines, drives and power electronics, electromobility

Main Article
New traction power supply technology 25 kV/50 Hz (part 1)

SVĚTLO (Light) 2/2020 was released on March 6th 2020. Its digital version will be available immediately.

Market, business, enterprise
BOOBA in new showroom, which surpassed all expectations
Discourse with Technology of Capital city Prague chairman of management

Day light
Diagram of overshadow for 21st march
Modern methods of gaining dates for processing lighting technology assessment

Mystery that was holding back development of next-generation solar cells solved

30. 12. 2016 | Imperial College London | www.imperial.ac.uk

Scientists have identified an unexpected cause of poor performance in a new class of flexible and cheap solar cells, bringing them closer to market.

In the new study, scientists looked at solar cells made from materials known as perovskites. These can be produced cheaply from chemicals mixed into printable or sprayable ink, which then crystallises to form light-absorbing films.

Solving the mystery of perovskite solar cells

However, perovskite films contain charged defects that are likely to impair their performance. Slow movement of these defects is thought to be responsible for a process known as hysteresis, which leads to irregularities in the efficiency with which light is converted to electrical current.

Now researchers from Imperial College London and collaborators have developed new experiments to follow which direction electrons move in the solar cell when they are generated with a short pulse of light. They found that the mobile charged defects are still present even in solar cells with very efficient contact materials, despite these cells showing no hysteresis. Hysteresis was only found when cells suffered the combined effects of both the defects and poor selectivity at the contacts.

Read more at Imperial College London

Image Credit: Imperial College London

-jk-