We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2019 was released on March 11th 2019. Its digital version will be available on March 11th 2019.

Topic: Amper 2019 – 271 International trade fair for electrical engineering

Main Article
Smart Cities (part 8)

SVĚTLO (Light) 2/2019 was released on March 15th 2019. Its digital version will be available immediately.

Architectural and scenic lighting
The architectural lighting of Bečov nad Teplou castle
Lighting design in a nutshell – Part 41
The analyse of light picture a little more theoretic

Day light
Biggest mistakes in day lighting design of buildings

More Flexible Nanomaterials Can Make Fuel Cell Cars Cheaper

22.02.2019 | Johns Hopkins University | www.jhu.edu

A new method of increasing the reactivity of ultrathin nanosheets, just a few atoms thick, can someday make fuel cells for hydrogen cars cheaper, finds a new Johns Hopkins study.

A report of the findings offers promise towards faster, cheaper production of electrical power using fuel cells, but also of bulk chemicals and materials such as hydrogen. “Every material experiences surface strain due to the breakdown of the material’s crystal symmetry at the atomic level. We discovered a way to make these crystals ultrathin, thereby decreasing the distance between atoms and increasing the material’s reactivity,” says Chao Wang, an assistant professor of chemical and biomolecular engineering at The Johns Hopkins University, and one of the study’s corresponding authors.

Cheaper fuel cells

One example of how optimizing reactions can be useful in application is increasing the activity of catalysts used for fuel cell cars. While fuel cells represent a promising technology toward emission-free electrical vehicles, the challenge lies in the expense associated with the precious metal catalysts such as platinum and palladium, limiting its viability to the vast majority of consumers. A more active catalyst for the fuel cells can reduce cost and clear the way for widespread adoption of green, renewable energy.

Read more at Johns Hopkins University

Image Credit: Will Kirk/Johns Hopkins University

-jk-