We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 6/2017 was released on June 7th 2017. Its digital version will be available on June 26th 2017.

Topic: Rotating el. machines; Drives and power electronics; Frequency converters; Electromobility

Main Article
Use of programmable logic devices in electric drives
Permanent-magnet DC electric machines

SVĚTLO (Light) 3/2017 was released on June 9th 2017. Its digital version will be available on July 10th 2017.

Lightning sources
Terminology of LED lighting sources 

Daylight
The day lighting of big living rooms
Light technology assessment of linear structure

Making Invisible Physics Visible

04.05.2016 | UCSB | www.news.ucsb.edu

New sensor technology created at UCSB captures nanoscale images with high spatial resolution and sensitivity.

If using a single atom to capture high-resolution images of nanoscale material sounds like science fiction, think again. That’s exactly what the Quantum Sensing and Imaging Group at UC Santa Barbara has achieved. Members of physicist Ania Jayich’s lab worked for two years to develop a radically new sensor technology capable of nanometer-scale spatial resolution and exquisite sensitivity. Their findings appear in the journal Nature Nanotechnology.

New sensor technology

The team chose to image a relatively well-studied superconducting material containing magnetic structures called vortices — localized regions of magnetic flux. With their instrument, the researchers were able to image individual vortices.

The team is currently imaging skyrmions — quasiparticles with magnetic vortex-like configurations — with immense appeal for future data storage and spintronic technologies. Leveraging their instrument’s nanoscale spatial resolution, they aim to determine the relative strengths of competing interactions in the material that give rise to skyrmions. “There are a lot of different interactions between atoms and you need to understand all of them before you can predict how the material will behave,” Jayich said.

Read more at UCSB

Image Credit: UCSB

-jk-