We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2018 was released on February 14th 2018. Its digital version will be available on March 12th 2018.

Topic: Electrical devices; Devices for smart grids; Internet of Things

Main Article
Power flow control in grid using power converters

SVĚTLO (Light) 1/2018 was released on February 5th 2018. Its digital version will be available on March 5th 2018.

Architectural and scenic lighting
Mexican light
Lighting design in a nutshell – Part 34
Lighting technology documentation – part 2 Schemes for scenic lighting

Luminaires and luminous apparatuses
NITECO LED luminaires – guarantied lifespan and warm white light not only for public lighting

Making Invisible Physics Visible

04.05.2016 | UCSB | www.news.ucsb.edu

New sensor technology created at UCSB captures nanoscale images with high spatial resolution and sensitivity.

If using a single atom to capture high-resolution images of nanoscale material sounds like science fiction, think again. That’s exactly what the Quantum Sensing and Imaging Group at UC Santa Barbara has achieved. Members of physicist Ania Jayich’s lab worked for two years to develop a radically new sensor technology capable of nanometer-scale spatial resolution and exquisite sensitivity. Their findings appear in the journal Nature Nanotechnology.

New sensor technology

The team chose to image a relatively well-studied superconducting material containing magnetic structures called vortices — localized regions of magnetic flux. With their instrument, the researchers were able to image individual vortices.

The team is currently imaging skyrmions — quasiparticles with magnetic vortex-like configurations — with immense appeal for future data storage and spintronic technologies. Leveraging their instrument’s nanoscale spatial resolution, they aim to determine the relative strengths of competing interactions in the material that give rise to skyrmions. “There are a lot of different interactions between atoms and you need to understand all of them before you can predict how the material will behave,” Jayich said.

Read more at UCSB

Image Credit: UCSB

-jk-