We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2019 was released on February 13th 2019. Its digital version will be available on March 11th 2019.

Topic: Electrical appliances – switching, protective, signalling and special

Main Article
Advanced power converter topology
Smart Cities (part 7)

SVĚTLO (Light) 1/2019 was released on February 4th 2019. Its digital version will be available on March 5th 2019.

Fairs and exhibitions
Invitation at LIGHT IN ARCHITECTURE exhibition
Prolight + Sound 2019: keep up with time
The light at For Arch 2018 fair

Public lighting
Lights of towns and communities 2018 – the meeting at the round table

Magnetic fields provide a new way to communicate wirelessly

07.09.2015 | UC San Diego | www.jacobsschool.ucsd.edu

A new technique could pave the way for ultra low power and high-security wireless communication systems.

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power and more secure way to communicate information between wearable electronic devices, providing an improved alternative to existing wireless communication systems, researchers said.

Magnetic fields as a way of wireless communication

While this work is still a proof-of-concept demonstration, researchers envision developing it into an ultra low power wireless system that can easily transmit information around the human body. An application of this technology would be a wireless sensor network for full-body health monitoring.

Electrical engineers demonstrated a technique called magnetic field human body communication, which uses the body as a vehicle to deliver magnetic energy between electronic devices. An advantage of this system is that magnetic fields are able to pass freely through biological tissues, so signals are communicated with much lower path losses and potentially, much lower power consumption.

Read more at UC San Diego

Image Credit: UC San Diego

-jk-