We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2016 was released on December 7th 2016. Its digital version will be available on January 6th 2017.

 

Topic: Measurement, measuring devices and measurement engineering; Testing and diagnostics

 

Main Article

Lithium traction batteries for electric mobility (final part 2)

SVĚTLO (Light) 6/2016 was released on December 5th 2016. Its digital version will be available on January 5th 2017.

Interiors lighting
Colloquium Interiors 2016 – the fifth anniversary
Cooperation of indoor interior and lighting 

Standards, regulations and recommendations
New standards for road lighting

Magnetic fields provide a new way to communicate wirelessly

07.09.2015 | UC San Diego | www.jacobsschool.ucsd.edu

A new technique could pave the way for ultra low power and high-security wireless communication systems.

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power and more secure way to communicate information between wearable electronic devices, providing an improved alternative to existing wireless communication systems, researchers said.

Magnetic fields as a way of wireless communication

While this work is still a proof-of-concept demonstration, researchers envision developing it into an ultra low power wireless system that can easily transmit information around the human body. An application of this technology would be a wireless sensor network for full-body health monitoring.

Electrical engineers demonstrated a technique called magnetic field human body communication, which uses the body as a vehicle to deliver magnetic energy between electronic devices. An advantage of this system is that magnetic fields are able to pass freely through biological tissues, so signals are communicated with much lower path losses and potentially, much lower power consumption.

Read more at UC San Diego

Image Credit: UC San Diego

-jk-