We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2019 was released on June 26th 2019. Its digital version will be available on July 26th 2019.

Topic: Cables, conductors and cable engineering, Tools, equipment and accessories for work with cables

Main Article
Asset management and diagnostic needs in Industry 4.0

SVĚTLO (Light) 3/2019 was released on June 11th 2019. Its digital version will be available on July 15th 2019.

Fairs and exhibitions
Euroluce 2019 by designers eyes
Exhibition Light in architecture 2019
Amper 2019 in capture of sophisticated technologies

Refreshing our memory
Lighting glass from Kamenný pahorek

Looking for the next leap in rechargeable batteries

20.02.2017 | University of Southern California | news.usc.edu

USC researchers may have just found a solution for one of the biggest stumbling blocks to the next wave of rechargeable batteries.

The lithium-sulfur battery, long thought to be better at energy storage capacity than its more popular lithium-ion counterpart, was hampered by its short cycle life. Currently the lithium-sulfur battery can be recharged 50 to 100 times — impractical as an alternative energy source compared to 1,000 times for many rechargeable batteries on the market today.

Lithium-sulfur battery

The solution devised by researchers from USC is something they call the “Mixed Conduction Membrane,” or MCM, a small piece of non-porous, fabricated material sandwiched between two layers of porous separators, soaked in electrolytes and placed between the two electrodes.

The membrane works as a barrier in reducing the shuttling of dissolved polysulfides between anode and cathode, a process that increases the kind of cycle strain that has made the use of lithium-sulfur batteries for energy storage a challenge. This novel membrane solution preserves the high-discharge rate capability and energy density without losing capacity over time.

Read more at University of Southern California

Image Credit: Sri Narayan

-jk-