We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2019 was released on June 26th 2019. Its digital version will be available on July 26th 2019.

Topic: Cables, conductors and cable engineering, Tools, equipment and accessories for work with cables

Main Article
Asset management and diagnostic needs in Industry 4.0

SVĚTLO (Light) 4/2019 was released on July 29th 2019. Its digital version will be available on August 29th 2019.

Lighting installations
Foxtrot controls new location of barmans
Dynamic illumination of Guardian Angels’ chapel in Sušice

Accessories of lighting installations
Safety, austerity and comfort with KNX
Worldwide first LED switching source with KNX interface from MEAN WELL producer
KNX – the system with future
Schmachtl – connector installation gesis

Integrating optical components into existing chip designs

20.04.2018 | MIT | news.mit.edu

Two and a half years ago, a team of researchers led by groups at MIT, the University of California at Berkeley, and Boston University announced a milestone: the fabrication of a working microprocessor, built using only existing manufacturing processes, that integrated electronic and optical components on the same chip.

The researchers’ approach, however, required that the chip’s electrical components be built from the same layer of silicon as its optical components. That meant relying on an older chip technology in which the silicon layers for the electronics were thick enough for optics.

Integrating component on existing chips

In the latest issue of Nature, a team of 18 researchers, led by the same MIT, Berkeley, and BU groups, reports another breakthrough: a technique for assembling on-chip optics and electronic separately, which enables the use of more modern transistor technologies. Again, the technique requires only existing manufacturing processes.

Read more at MIT

Image Credit: Amir Atabaki

-jk