We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2021 was released on October 1st 2021. Its digital version will be available on November 1st 2021.

Topic: Power engineering; Electricity quality; Renewable Energy

Main article
Local specifics of South-Bohemian region regarding usage of alternative fuel cars

SVĚTLO (Light) 4-5/2021 was released 9.17.2021. Its digital version will be available 9.17.2021.

Lighting installations
Lighting reconstruction of underpass and platforms of Ústí nad Orlicí railway station

Public lighting
The lighting of park at Episcopal Residence of Ostrava-Opava in Ostrava
Outdoor lighting systems and intrusive light
Generel of public lighting 9th part
Environmental viewpoint

Highly conductive and elastic nanomembrane for skin electronics

27. 8. 2021 | Phys.org | www.phys.org

"Skin electronics" are thin, flexible electronics that could be mounted onto the skin. While it may sound like something out of science fiction, it is anticipated that soon such devices will serve in a wide range of applications such as health monitoring, health diagnosis, virtual reality, and human-machine interface.

Creating such devices requires components that are soft and stretchable to be mechanically compatible with the human skin. One of the vital components of skin electronics is an intrinsically stretchable conductor that transmits electrical signals between devices. For reliable operation and high-quality performance, a stretchable conductor which features ultrathin thickness, metal-like conductivity, high stretchability, and ease of patternability is required. Despite extensive research, it was not yet possible to develop a material that possesses all of these properties simultaneously, due to the fact that they often have trade-offs between one another.

Electronics on skin

Led by professor Hyeon Taeghwan and Kim Dae-Hyeong, researchers at the Center for Nanoparticle Research within the Institute for Basic Science (IBS) in Seoul, South Korea unveiled a new method to fabricate a composite material in the form of nanomembrane, which comes with all of the above-mentioned properties. The new composite material consists of metal nanowires that are tightly packed in a monolayer within ultrathin rubber film.

Read more at Phys.org

Image Credit: Unsplash

-jk-