We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2017 was released on February 17th 2017. Its digital version will be available on March 10th 2017.

 

Topic: Electrical appliances – switching, protective and signalling; Devices for smart grids

 

Main Article

Atypical concept of DC power supply source for high current consumption

SVĚTLO (Light) 1/2017 was released on February 7th 2017. Its digital version will be available on March 7th 2017.

Fair and exhibitions
Invitation on LIGHT IN ARCHITECTURE exhibition 

Architectural and scenic lighting
Lighting design in a nutshell
Spiegeltent illumination and its specificity

Going beyond 3D printing to add a new dimension for additive manufacturing

24.08.2016 | Lawrence Livermore National Laboratory | www.llnl.gov

A team of Lawrence Livermore National Laboratory researchers has demonstrated the 3D printing of shape-shifting structures that can fold or unfold to reshape themselves when exposed to heat or electricity. The micro-architected structures were fabricated from a conductive, environmentally responsive polymer ink developed at the Lab.

While the approach of using responsive materials in 3D printing, often known as 4D printing, is not new, LLNL researchers are the first to combine the process of 3D printing and subsequent folding (via origami methods) with conductive smart materials to build complex structures.

3D printed material can fold itself

The researchers describe creating primary shapes from an ink made from soybean oil, additional co-polymers and carbon nanofibers, and programming them into a temporary shape at an engineered temperature, determined by chemical composition. Then the shape-morphing effect was induced by ambient heat or by heating the material with an electrical current, which reverts the part's temporary shape back to its original shape.

Through a direct-ink writing 3D printing process, the team produced several types of structures -- a bent conductive device that morphed to a straight device when exposed to an electric current or heat, a collapsed stent that expanded after being exposed to heat and boxes that either opened or closed when heated.

Read more at Lawrence Livermore National Laboratory

Image Credit: Lawrence Livermore National Laboratory

-jk-