We Continue the Work of Those
Who Were the First.

  • Hennlich
  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2018 was released on October 31th 2018. Its digital version will be available on November 30st 2018.

Topic: Switchboards and substations; Maintenance of electrical equipment; Rotating electrical machines and drives

Main Article
Smart Cities (part 4 – volume 1)

SVĚTLO (Light) 5/2018 was released on September 17th 2018. Its digital version will be available immediately.

Interiors lighting
Luminaire selection by the concept of interior
The unique book about interiors nowadays on market
Invitation on colloquium Interiéry 2018 – exceptional action for the seventh time

Newsreel
Profesor Jiří Habel passed away – memories remain

Going beyond 3D printing to add a new dimension for additive manufacturing

24.08.2016 | Lawrence Livermore National Laboratory | www.llnl.gov

A team of Lawrence Livermore National Laboratory researchers has demonstrated the 3D printing of shape-shifting structures that can fold or unfold to reshape themselves when exposed to heat or electricity. The micro-architected structures were fabricated from a conductive, environmentally responsive polymer ink developed at the Lab.

While the approach of using responsive materials in 3D printing, often known as 4D printing, is not new, LLNL researchers are the first to combine the process of 3D printing and subsequent folding (via origami methods) with conductive smart materials to build complex structures.

3D printed material can fold itself

The researchers describe creating primary shapes from an ink made from soybean oil, additional co-polymers and carbon nanofibers, and programming them into a temporary shape at an engineered temperature, determined by chemical composition. Then the shape-morphing effect was induced by ambient heat or by heating the material with an electrical current, which reverts the part's temporary shape back to its original shape.

Through a direct-ink writing 3D printing process, the team produced several types of structures -- a bent conductive device that morphed to a straight device when exposed to an electric current or heat, a collapsed stent that expanded after being exposed to heat and boxes that either opened or closed when heated.

Read more at Lawrence Livermore National Laboratory

Image Credit: Lawrence Livermore National Laboratory

-jk-