We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2018 was released on March 14th 2018. Its digital version will be available on March 14th 2018.

Topic: Amper 2018 – 26th International trade fair for electrical engineering

Main Article
Influence of magnetic storms on transformers of the power system

SVĚTLO (Light) 2/2018 was released on March 16th 2018. Its digital version will be available immediately.

Fairs and exhibitions
Interior elite again after year in Letňany

Luminaires and luminous apparatuses
Emergency lighting
The future of industrial lighting has name INNOVA
GOLY luminaire – the practical high bay luminaire
McLED® – brand name of first rate quality LED lighting
VOLGA EU luminaire our choice for Europe

Glow-in-the-dark dye could fuel liquid-based batteries

18.11.2016 | University at Buffalo | www.buffalo.edu

Scientists at the University at Buffalo identified a fluorescent dye called BODIPY as an ideal material for stockpiling energy in rechargeable, liquid-based batteries that could one day power cars and homes.

BODIPY — short for boron-dipyrromethene — shines brightly in the dark under a black light. But the traits that facilitate energy storage are less visible. According to new research, the dye has unusual chemical properties that enable it to excel at two key tasks: storing electrons and participating in electron transfer. Batteries must perform these functions to save and deliver energy, and BODIPY is very good at them.

Glowing dye for better batteries

In experiments, a BODIPY-based test battery operated efficiently and with longevity, running well after researchers drained and recharged it 100 times.

Testing batteries consist of two tanks of fluids separated by various barriers. When the battery is being used, electrons are harvested from one tank and moved to the other, generating an electric current that — in theory — could power devices as small as a flashlight or as big as a house. To recharge the battery, you would use a solar, wind or other energy source to force the electrons back into the original tank, where they would be available to do their job again.

Battery’s effectiveness depends on the chemical properties of the fluids in each tank.

Read more at University at Buffalo

Image Credit: Douglas Levere