We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2019 was released on February 13th 2019. Its digital version will be available on March 11th 2019.

Topic: Electrical appliances – switching, protective, signalling and special

Main Article
Advanced power converter topology
Smart Cities (part 7)

SVĚTLO (Light) 1/2019 was released on February 4th 2019. Its digital version will be available on March 5th 2019.

Fairs and exhibitions
Invitation at LIGHT IN ARCHITECTURE exhibition
Prolight + Sound 2019: keep up with time
The light at For Arch 2018 fair

Public lighting
Lights of towns and communities 2018 – the meeting at the round table

Getting More Miles From Plug-in Hybrids

17.02.2016 | University of California | ucrtoday.ucr.edu

Plug-in hybrid electric vehicles (PHEVs) can reduce fuel consumption and greenhouse gas emissions compared to their gas-only counterparts. Researchers at the University of California, Riverside’s Bourns College of Engineering have taken the technology one step further, demonstrating how to improve the efficiency of current PHEVs by almost 12 percent.

Since plug-in hybrids combine gas or diesel engines with electric motors and large rechargeable batteries, a key component is an energy management system (EMS) that controls when they switch from ‘all-electric’ mode, during which stored energy from their batteries is used, to ‘hybrid’ mode, which utilizes both fuel and electricity. As new EMS devices are developed, an important consideration is combining the power streams from both sources in the most energy-efficient way.

Better efficiency of hybrid systems

While the UCR EMS does require trip-related information, it also gathers data in real time using onboard sensors and communications devices, rather than demanding it upfront. It is one of the first systems based on a machine learning technique called reinforcement learning (RL).

In comparison-based tests on a 20-mile commute in Southern California, the UCR EMS outperformed currently available binary mode systems, with average fuel savings of 11.9 percent. Even better, the system gets smarter the more it’s used and is not model- or driver-specific, meaning it can be applied to any PHEV driven by any individual.

Read more at University of California

Image Credit: Wikipedia

-jk-