We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2019 was released on November 2nd 2019. Its digital version will be available immediately.

Topic: Topic: Electroenergetics, Devices for transmission and distribution of electricity

Main Article
Problematics of measurement on inverter welding sources

SVĚTLO (Light) 5/2019 was released on September 16th 2019. Its digital version will be available immediately.

Professional organizations activities
International conference LIGHT (SVĚTLO) 2019 – 6th announcement
We participated in International commission on illumination CIE 2019 congress in Washington
Technical colloquium SLOVALUX 2019

Fairs and exhibitions
Inspire with boho styl and design of Far East at autumn fair FOR INTERIOR

Future electronic components to be printed like newspapers

20.07.2018 | Purdue University | www.purdue.edu

Purdue researchers have developed a new technique that prints metals like newspapers, making them smoother and more flexible for better current flow throughout a metallic circuit. Future ultrafast devices also will require much smaller metal components, which calls for a higher resolution to make them at these nanoscale sizes.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses the speed and precision of roll-to-roll newspaper printing to remove a couple of fabrication barriers in making electronics faster than they are today.

Superelastic metals

The fabrication method, called roll-to-roll laser-induced superplasticity, uses a rolling stamp like the ones used to print newspapers at high speed. The technique can induce, for a brief period of time, “superelastic” behavior to different metals by applying high-energy laser shots, which enables the metal to flow into the nanoscale features of the rolling stamp – circumventing the formability limit.

Read more at Purdue University

Image Credit: Purdue University/Ramses Martinez

-jk-