We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2019 was released on February 13th 2019. Its digital version will be available on March 11th 2019.

Topic: Electrical appliances – switching, protective, signalling and special

Main Article
Advanced power converter topology
Smart Cities (part 7)

SVĚTLO (Light) 1/2019 was released on February 4th 2019. Its digital version will be available on March 5th 2019.

Fairs and exhibitions
Invitation at LIGHT IN ARCHITECTURE exhibition
Prolight + Sound 2019: keep up with time
The light at For Arch 2018 fair

Public lighting
Lights of towns and communities 2018 – the meeting at the round table

Flexible color displays with microfluidics

16.08.2018 | Phys.org | www.phys.org

A new study published on Microsystems and Nanoengineering by Kazuhiro Kobayashi and Hiroaki Onoe details the development of a flexible and reflective multicolor display system that does not require continued energy supply for color retention.

The idea aims to find futuristic applications with sustainable color displays and replace existing electronic display signs currently used for multicolor messages and images. While the concept originates from electronic paper or flexible electronics that look like print on paper (developed for smart wear), the proposed method simply relies on sequentially introduced colored water droplets and air pockets in a microfluidic device precisely fabricated on a flexible polymer to maintain stable bitmap images without energy consumption.

Flexible color display

The method also deviates from existing techniques of liquid crystals or organic light emitting diodes (OLEDs), which consume energy at the level of the light-emitting pixel. The technique houses a microfluidic water droplet train as a flexible, reflective display. The working principle of the system is based on a rotary liquid selector with suction-based negative pressure to drive the droplets in the intended direction and form a predetermined sign.

Read more at Phys.org

Image Credit: Microsystems and Nanoengineering

-jk-