We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2017 was released on November 6th 2017. Its digital version will be available on November 27th 2017.

Topic: Electrical distribution switchboards and switchboard technology; Rotating electrical machines

Main Article
Analysis of the CFD settings for simulating the temperature field of sinusoidal filter
On-line optimisation of current commutation angles in phases of BLDC motor

SVĚTLO (Light) 5/2017 was released on September 18th 2017. Its digital version will be available on September 18th 2017.

Luminaires and luminous apparatuses
MAYBE STYLE introducing LED design luminaires of German producer Lightnet
TREVOS – new luminaires for industry and offices
How many types of LED panels produces MODUS?
Intelligent LED luminaire RENO PROFI

Interiors lighting
The light in indoor flat interior – questions and answers

First supercapacitor that can be charged by human body heat

14.11.2016 | Texas A&M University | engineering.tamu.edu

Engineers from Texas A&M University have developed a new concept of electrical energy storage: Thermally Chargeable Solid-state Supercapacitor.

This innovative supercapacitor allows charging to be completed using thermal energy in addition to the traditional electrical charging method for capacitors.

Supercapacitor charged by human body heat

The Thermally Chargeable Solid-state Supercapacitor works by converting thermal energy into electrical energy and then storing it in the device at the same time. For example, human body heat, or any heat dissipating objects that create temperature differences from their surroundings can be used to charge the capacitor without external electrical power sources.

The supercapacitor is also flexible in that it can be used as a power supply for wearable electronics, and can be integrated into wireless data transmission systems to operate IoT (internet of things) sensors. IoT is a concept of connecting various electronic devices and sensors for data communication and exchange, which is particularly useful in real-time monitoring.

Read more at Texas A&M University

Image Credit: Texas A&M University

-jk-