We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2017 was released on December 6th 2017. Its digital version will be available on January 5th 2018.

Topic: Measurement, measuring devices and engineering; Testing and diagnostics

Main Article
Measurements on rotating machines using SFRA method
Application possibilities of ultra-capacitors or LiFePO4 batteries in trolley network of the Brno Public Transit Company

SVĚTLO (Light) 6/2017 was released on December 11th 2017. Its digital version will be available on january 11th 2018.

Lighting installations
The lighting of university building Centrale Supélec in Saclay in France
The light for our future

Daylight
Application and judgment light guides Solatube®

First supercapacitor that can be charged by human body heat

14.11.2016 | Texas A&M University | engineering.tamu.edu

Engineers from Texas A&M University have developed a new concept of electrical energy storage: Thermally Chargeable Solid-state Supercapacitor.

This innovative supercapacitor allows charging to be completed using thermal energy in addition to the traditional electrical charging method for capacitors.

Supercapacitor charged by human body heat

The Thermally Chargeable Solid-state Supercapacitor works by converting thermal energy into electrical energy and then storing it in the device at the same time. For example, human body heat, or any heat dissipating objects that create temperature differences from their surroundings can be used to charge the capacitor without external electrical power sources.

The supercapacitor is also flexible in that it can be used as a power supply for wearable electronics, and can be integrated into wireless data transmission systems to operate IoT (internet of things) sensors. IoT is a concept of connecting various electronic devices and sensors for data communication and exchange, which is particularly useful in real-time monitoring.

Read more at Texas A&M University

Image Credit: Texas A&M University

-jk-