We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2016 was released on September 27th 2016. Its digital version will be available on October 27th 2016.


Topic: 22nd International trade fair ELO SYS 2016; Electrical Power Engineering; RES; Emergency Power Units


Main Article

Power system management under utilization of Smart Grid system

Printed edition of SVĚTLO (Light) 5/2016 was released on September 19th 2016. Its digital version will be available immediately.


Standards, regulations and recommendations

Regulation No 10/2016 (Prague building code) from the view of building lighting technology


Lighting installations

PROLICHT CZECH – supplier of lighting for new SAP offices

Hold up the light to see in work your work

Modern and saving LED lifting of swimming pool hall

Exoskin: A Programmable Hybrid Shape-Changing Material

08.06.2016 | IEEE Spectrum, MIT | spectrum.ieee.com

Programmable matter isn't a thing that we have a lot of experience with yet. It's still very much a technology that’s slowly emerging from research labs.

MIT is one of those research centers, and Basheer Tome, a masters student at the MIT Tangible Media Group, has been working on one type of programmable material. Tome’s “membrane-backed rigid material,” called Exoskin, is made up of tessellated triangles of firm silicone mounted on top of a stack of flexible silicone bladders. By selectively inflating these air bladders, the Exoskin can dynamically change its shape to react to your touch, communicate information, change functionality, and more.

Programmable material

Official MIT report presented an example:

We also provide Exowheel, an automotive steering wheel, as a case study illustrating the concrete benefits and uses of texture change as a multi-modal, bi-directional interface. By incorporating Exoskin, Exowheel is able to transform its surface dynamically to create a customized grip for each individual user, on-the-fly, as well as to adapt the grip during the drive, as the car moves from congested city driving to rougher rural roads.

Read more at IEEE Spectrum

Image Credit: MIT