We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2019 was released on February 13th 2019. Its digital version will be available on March 11th 2019.

Topic: Electrical appliances – switching, protective, signalling and special

Main Article
Advanced power converter topology
Smart Cities (part 7)

SVĚTLO (Light) 1/2019 was released on February 4th 2019. Its digital version will be available on March 5th 2019.

Fairs and exhibitions
Invitation at LIGHT IN ARCHITECTURE exhibition
Prolight + Sound 2019: keep up with time
The light at For Arch 2018 fair

Public lighting
Lights of towns and communities 2018 – the meeting at the round table

Electrically tunable metasurfaces pave the way toward dynamic holograms

03.03.2017 | Applied Physics Letters | aip.scitation.org

Dynamic holograms allow three-dimensional images to change over time like a movie, but so far these holograms are still being developed. The development of dynamic holograms may now get a boost from recent research on optical metasurfaces, a type of photonic surface with tunable optical properties.

A metasurface is a thin sheet consisting of a periodic array of nanoscale elements. The exact dimensions of these elements is critical, since they are specifically designed to manipulate certain wavelengths of light in particular ways that enhance their electric and magnetic properties.

Dynamic holograms

Here, the scientists demonstrated how to manipulate a metasurface by applying an electrical voltage. By switching the control voltage “on” and “off,” the researchers could change the optical transmission of the metasurface. For instance, they could tune the transmission from opaque to the transparent regime for certain wavelengths, achieving a transmittance change of up to 75%. The voltage switch could also change the phase of certain wavelengths by up to 180°.

Read more at Applied Physics Letters

Image Credit: Applied Physics Letters

-jk-