We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 4-5/2020 was released on May 6th 2020. Its digital version will be available immediately.

Topic: Electroinstallation; Lightning and overvoltage protection

Energetics
SüdOstLink
Energy law novel: An end to energy scammers

SVĚTLO (Light) 2/2020 was released on March 6th 2020. Its digital version will be available immediately.

Market, business, enterprise
BOOBA in new showroom, which surpassed all expectations
Discourse with Technology of Capital city Prague chairman of management

Day light
Diagram of overshadow for 21st march
Modern methods of gaining dates for processing lighting technology assessment

Electrically tunable metasurfaces pave the way toward dynamic holograms

3. 3. 2017 | Applied Physics Letters | aip.scitation.org

Dynamic holograms allow three-dimensional images to change over time like a movie, but so far these holograms are still being developed. The development of dynamic holograms may now get a boost from recent research on optical metasurfaces, a type of photonic surface with tunable optical properties.

A metasurface is a thin sheet consisting of a periodic array of nanoscale elements. The exact dimensions of these elements is critical, since they are specifically designed to manipulate certain wavelengths of light in particular ways that enhance their electric and magnetic properties.

Dynamic holograms

Here, the scientists demonstrated how to manipulate a metasurface by applying an electrical voltage. By switching the control voltage “on” and “off,” the researchers could change the optical transmission of the metasurface. For instance, they could tune the transmission from opaque to the transparent regime for certain wavelengths, achieving a transmittance change of up to 75%. The voltage switch could also change the phase of certain wavelengths by up to 180°.

Read more at Applied Physics Letters

Image Credit: Applied Physics Letters

-jk-