We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2021 was released on March 10th 2021. Its digital version will be available on March 26th 2021.

Topic: Electrical engineering in industry; Surge protection

Innovation, Technology, Projects
History of STEGO products
Industry 4.0 – past and present
Panasonic: Industrial automation products for your testing
ABB announced a significant increase in the number of charging stations in the Czech Republic

SVĚTLO (Light) 1/2021 was released 2.12.2021. Its digital version will be available immediately.

Interiors lighting
Interior of the year 2020 – offices in time of home office
PROLICHT CZECH fulfils images of architect about illumination of Obecní dvůr residence at Prague Old Town

Luminaires and light apparatuses
Covid 19 – are there actually any news at lighting producer?
Lighting systems of STEINEL company

Dielectric Metamaterial is Dynamically Tuned by Light

2. 5. 2018 | Duke University | www.duke.edu

Researchers at Duke University have built the first metal-free, dynamically tunable metamaterial for controlling electromagnetic waves. The approach could form the basis for technologies ranging from improved security scanners to new types of visual displays.

A metamaterial is an artificial material that manipulates waves like light and sound through properties of its structure rather than its chemistry. Researchers can design these materials to have rare or unnatural properties, like the ability to absorb specific ranges of the electromagnetic spectrum or to bend light backward.

Non-metal metamaterial

In the new technology, each grid location contains a tiny silicon cylinder just 50 microns tall and 120 microns wide, with the cylinders spaced 170 microns apart from one another. While silicon is not normally a conductive material, the researchers bombard the cylinders with a specific frequency of light in a process called photodoping. This imbues the typically insulating material with metallic properties by exciting electrons on the cylinders’ surfaces.

Read more at Duke University

Image Credit: Duke University

-jk-