We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2016 was released on September 27th 2016. Its digital version will be available on October 27th 2016.


Topic: 22nd International trade fair ELO SYS 2016; Electrical Power Engineering; RES; Emergency Power Units


Main Article

Power system management under utilization of Smart Grid system

Printed edition of SVĚTLO (Light) 5/2016 was released on September 19th 2016. Its digital version will be available immediately.


Standards, regulations and recommendations

Regulation No 10/2016 (Prague building code) from the view of building lighting technology


Lighting installations

PROLICHT CZECH – supplier of lighting for new SAP offices

Hold up the light to see in work your work

Modern and saving LED lifting of swimming pool hall

Cockroach inspires robot that squeezes through cracks

09.02.2016 | UC Berkeley | news.berkeley.edu

Not only that cockroaches can squish themselves to get into one-tenth-of-an-inch crevices, but once inside they can run at high speed even when flattened in half.

What the researchers at UC Berkeley in their research found has inspired a robot that can rapidly squeeze through cracks — a new capability for search-and-rescue in rubble resulting from tornados, earthquakes and explosions.

Robot that can get through tight spaces

Roaches traversing crevices, study leader Kaushik Jayaram found, can withstand forces 900 times their body weight without injury. Using the roach technique as inspiration, Jayaram designed a simple and cheap palm-sized robot that can splay its legs outward when squashed, then capped it with a plastic shield similar to the tough, smooth wings covering the back of a cockroach. Called CRAM, for compressible robot with articulated mechanisms, it was able to squeeze into and run through crevices half its height.

Jayaram built the model robot using an origami-like manufacturing technique, now available as an inexpensive kit made by Dash Robotics — a commercial spin-off from previous robotic work at UC Berkeley. Now, more robust versions will be needed for real-world testing.

Read more at UC Berkeley

Image Credit: UC Berkeley