We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2017 was released on March 15th 2017. Its digital version will be available immediately.

Topic: Amper 2017 – 25th International trade fair for electrical engineering

Main Article

Problems of electromobility

SVĚTLO (Light) 2/2017 was released on March 17th 2017. Its digital version will be available immediately.

Fair and exhibitions
Inspired lighting from foreign fairs 

Accessories of lighting installations
On lighting operation is possible to save with minimum investments
Maxos fusion – new Philips Quit assembling system
Inteligent solution Dalisys® for control lighting

Chemically Storing Solar Power

22.02.2016 | TU Wien | www.tuwien.ac.at

By combining  highly specialised new materials, the scientists at TU Wien (Vienna) have managed to combine high temperature photovoltaics with an electrochemical cell. Ultraviolet light can be directly used to pump oxygen ions through a solid oxide electrolyte. The energy of the UV light is stored chemically.

The key to success was an unusual choice of materials. Instead of the ordinary silicon based  photovoltaics, special metal oxides - so-called perovskites - were used. By combining several different metal oxides, the scientists managed to assemble a cell which combines photovoltaics and electrochemistry.

New way of storing solar power

New cell consists of two different parts – a photoelectric part on top and an electrochemical part below. In the upper layer, ultraviolet light creates free charge carriers, just like in a standard solar cell. The electrons in this layer are immediately removed and travel to the bottom layer of the electrochemical cell. Once there, these electrons are used to ionize oxygen to negative oxygen ions, which can then travel through a membrane in the electrochemical part of the cell.

Read more at TU Wien

Image Credit: TU Wien

-jk-