We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 1/2020 was released on January 20th 2020. Its digital version will be available on February 12th 2020.

Topic: Electrotechnology; Materials for electrical engineering; Wiring materia

Main Article
Using mHealth technolgy for automated data collection and transmission

SVĚTLO (Light) 6/2019 was released on December 9th 2019. Its digital version will be available on January 9th 2020.

Professional organizations activities
Light technology konference of Visegrád countries LUMEN V4 2020 – 1st announcement
23rd International conference SVĚTLO – LIGHT 2019
56th Conference of Society for development public lighting in Plzeň
What is new in CIE

Interiors lighting
Halla illuminated new Booking.com offices in Prague centre

Camouflage made of quantum material could hide you from infrared cameras

18.12.2019 | Purdue University | www.purdue.edu

Infrared cameras detect people and other objects by the heat they emit. Now, researchers have discovered the uncanny ability of a material to hide a target by masking its telltale heat properties.

The effect works for a range of temperatures that one day could include humans and vehicles, presenting a future asset to stealth technologies, the researchers say. What makes the material special is its quantum nature – properties that are unexplainable by classical physics. The study, published in the Proceedings of the National Academy of Sciences, is one step closer to unlocking the quantum material’s full potential.

Camouflage

Fooling infrared cameras is not new. Over the past few years, researchers have developed other materials made of graphene and black silicon that toy with electromagnetic radiation, also hiding objects from cameras. But how the quantum material in this study tricks an infrared camera is unique: it decouples an object’s temperature from its thermal light radiation, which is counterintuitive based on what is known about how materials behave according to fundamental physics laws. The decoupling allows information about an object’s temperature to be hidden from an infrared camera.

Read more at Purdue University

Image Credit: Erin Easterling

-jk-