We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2018 was released on June 27th 2018. Its digital version will be available on July 27th 2018.

Topic: Cables, conductors and cable engineering; Tools, equipment and accessories for work with cables

Main Article
Parametrization of circuit models of Li-accumulators for electromobility
Smart Cities (part 3 – volume 1)

SVĚTLO (Light) 4/2018 was released on July 30th 2018. Its digital version will be available on August 31th 2018.

Refreshing our memory
Eccentric luminaires of René Roubíček from the years1965 till 1977
Bases of photometry – 1st part
Great personage of Czech science of times after Battle at Bílá hora: doctor, naturalist, philosopher and physicist Jan Marek Marci from Kronland

Optical radiation effects and use
The light and circadian rhythms

Building Better Batteries

20.12.2016 | Caltech | www.caltech.edu

A joint team of researchers from Caltech and Carnegie Mellon University has measured for the first time the strength of lithium metal at the nano- and microscale, a discovery with important implications for suppressing dendrite formation and improving lithium-ion batteries.

Using a special vacuum chamber at Caltech, the team of researchers formed pillars of single-crystal lithium a few micrometers tall and some nanometers to micrometers in diameter. Each of these single crystalline lithium pillars was extracted from a larger piece of lithium, and thus each had a particular crystallographic orientation—a particular angle with respect to the original sample.

More effective batteries

The researchers discovered that at this size, lithium is up to 100 times stronger than previous measurements indicated. Additionally, collaborators at Carnegie Mellon University calculated how the stiffness of lithium dendrites varied with the crystallographic orientation and discovered that it could be as different as a factor of four.

Read more at Caltech

Image Credit: Caltech

-jk-