We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2017 was released on December 6th 2017. Its digital version will be available on January 5th 2018.

Topic: Measurement, measuring devices and engineering; Testing and diagnostics

Main Article
Measurements on rotating machines using SFRA method
Application possibilities of ultra-capacitors or LiFePO4 batteries in trolley network of the Brno Public Transit Company

SVĚTLO (Light) 5/2017 was released on September 18th 2017. Its digital version will be available on September 18th 2017.

Luminaires and luminous apparatuses
MAYBE STYLE introducing LED design luminaires of German producer Lightnet
TREVOS – new luminaires for industry and offices
How many types of LED panels produces MODUS?
Intelligent LED luminaire RENO PROFI

Interiors lighting
The light in indoor flat interior – questions and answers

Breakthrough in ‘wonder’ materials paves way for flexible tech

17.02.2017 | University of Warwick | www2.warwick.ac.uk

Gadgets are set to become flexible, highly efficient and much smaller, following a breakthrough in measuring two-dimensional ‘wonder’ materials by the University of Warwick.

Dr Neil Wilson in the Department of Physics has developed a new technique to measure the electronic structures of stacks of two-dimensional materials – flat, atomically thin, highly conductive, and extremely strong materials – for the first time.

Flexible electronics

Multiple stacked layers of 2D materials – known as heterostructures – create highly efficient optoelectronic devices with ultrafast electrical charge, which can be used in nano-circuits, and are stronger than materials used in traditional circuits. Various heterostructures have been created using different 2D materials – and stacking different combinations of 2D materials creates new materials with new properties.

Dr Wilson’s technique measures the electronic properties of each layer in a stack, allowing researchers to establish the optimal structure for the fastest, most efficient transfer of electrical energy.

Read more at University of Warwick

Image Credit: University of Warwick

-jk-