We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 5/2018 was released on May 16th 2018. Its digital version will be available on June 6th 2018.

Topic: Lightning and overvoltage protection; EFS, EPS; ELO SYS 2018

Main Article
Energy router and its role in smart grids
Smart Cities (part 2 – volume 1)

SVĚTLO (Light) 2/2018 was released on March 16th 2018. Its digital version will be available immediately.

Fairs and exhibitions
Interior elite again after year in Letňany

Luminaires and luminous apparatuses
Emergency lighting
The future of industrial lighting has name INNOVA
GOLY luminaire – the practical high bay luminaire
McLED® – brand name of first rate quality LED lighting
VOLGA EU luminaire our choice for Europe

Breakthrough in ‘wonder’ materials paves way for flexible tech

17.02.2017 | University of Warwick | www2.warwick.ac.uk

Gadgets are set to become flexible, highly efficient and much smaller, following a breakthrough in measuring two-dimensional ‘wonder’ materials by the University of Warwick.

Dr Neil Wilson in the Department of Physics has developed a new technique to measure the electronic structures of stacks of two-dimensional materials – flat, atomically thin, highly conductive, and extremely strong materials – for the first time.

Flexible electronics

Multiple stacked layers of 2D materials – known as heterostructures – create highly efficient optoelectronic devices with ultrafast electrical charge, which can be used in nano-circuits, and are stronger than materials used in traditional circuits. Various heterostructures have been created using different 2D materials – and stacking different combinations of 2D materials creates new materials with new properties.

Dr Wilson’s technique measures the electronic properties of each layer in a stack, allowing researchers to establish the optimal structure for the fastest, most efficient transfer of electrical energy.

Read more at University of Warwick

Image Credit: University of Warwick

-jk-