We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2017 was released on February 17th 2017. Its digital version will be available on March 10th 2017.

 

Topic: Electrical appliances – switching, protective and signalling; Devices for smart grids

 

Main Article

Atypical concept of DC power supply source for high current consumption

SVĚTLO (Light) 1/2017 was released on February 7th 2017. Its digital version will be available on March 7th 2017.

Fair and exhibitions
Invitation on LIGHT IN ARCHITECTURE exhibition 

Architectural and scenic lighting
Lighting design in a nutshell
Spiegeltent illumination and its specificity

Battery technology with off-the-charts charging capacity

25.04.2016 | Phys.org | www.phys.org

University of California, Irvine researchers have invented nanowire-based battery material that can be recharged hundreds of thousands of times, moving us closer to a battery that would never require replacement. The breakthrough work could lead to commercial batteries with greatly lengthened lifespans for computers, smartphones, appliances, cars and spacecraft.

Scientists have long sought to use nanowires in batteries. Thousands of times thinner than a human hair, they're highly conductive and feature a large surface area for the storage and transfer of electrons. However, these filaments are extremely fragile and don't hold up well to repeated discharging and recharging, or cycling. In a typical lithium-ion battery, they expand and grow brittle, which leads to cracking.

New battery technology using nanowires

UCI researchers have solved this problem by coating a gold nanowire in a manganese dioxide shell and encasing the assembly in an electrolyte made of a Plexiglas-like gel. The combination is reliable and resistant to failure.

The study leader, UCI doctoral candidate Mya Le Thai, cycled the testing electrode up to 200,000 times over three months without detecting any loss of capacity or power and without fracturing any nanowires.

Read more at Phys.org

Image Credit: UCI

-jk-