We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2019 was released on February 13th 2019. Its digital version will be available on March 11th 2019.

Topic: Electrical appliances – switching, protective, signalling and special

Main Article
Advanced power converter topology
Smart Cities (part 7)

SVĚTLO (Light) 1/2019 was released on February 4th 2019. Its digital version will be available on March 5th 2019.

Fairs and exhibitions
Invitation at LIGHT IN ARCHITECTURE exhibition
Prolight + Sound 2019: keep up with time
The light at For Arch 2018 fair

Public lighting
Lights of towns and communities 2018 – the meeting at the round table

Another Milestone in Hybrid Artificial Photosynthesis

06.01.2016 | Berkeley Lab | newscenter.lbl.gov

A team of researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) developing a bioinorganic hybrid approach to artificial photosynthesis have achieved another milestone.

Having generated quite a buzz with their hybrid system of semiconducting nanowires and bacteria that used electrons to synthesize carbon dioxide into acetate, the team has now developed a hybrid system that produces renewable molecular hydrogen and uses it to synthesize carbon dioxide into methane, the primary constituent of natural gas.

Artificial Photosynthesis

Photosynthesis is the process by which nature harvests the energy in sunlight and uses it to synthesize carbohydrates from carbon dioxide and water. Carbohyrates are biomolecules that store the chemical energy used by living cells. In the original hybrid artificial photosynthesis system developed by the Berkeley Lab team, an array of silicon and titanium oxide nanowires collected solar energy and delivered electrons to microbes which used them to reduce carbon dioxide into a variety of value-added chemical products. In the new system, solar energy is used to split the water molecule into molecular oxygen and hydrogen. The hydrogen is then transported to microbes that use it to reduce carbon dioxide into one specific chemical product, methane.

Read more at Berkeley Lab

Image Credit: Berkeley Lab

-jk-