We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2018 was released on June 27th 2018. Its digital version will be available on July 27th 2018.

Topic: Cables, conductors and cable engineering; Tools, equipment and accessories for work with cables

Main Article
Parametrization of circuit models of Li-accumulators for electromobility
Smart Cities (part 3 – volume 1)

SVĚTLO (Light) 4/2018 was released on July 30th 2018. Its digital version will be available on August 31th 2018.

Refreshing our memory
Eccentric luminaires of René Roubíček from the years1965 till 1977
Bases of photometry – 1st part
Great personage of Czech science of times after Battle at Bílá hora: doctor, naturalist, philosopher and physicist Jan Marek Marci from Kronland

Optical radiation effects and use
The light and circadian rhythms

Adaptable 3-D printing

14.01.2017 | MIT News | news.mit.edu

Three-dimensional printing technology makes it possible to rapidly manufacture objects by depositing layer upon layer of polymers in a precisely determined pattern. Once these objects are completed, the polymers that form the material are “dead” — that is, they cannot be extended to form new polymer chains.

MIT chemists have now developed a technique that allows them to print objects and then go back and add new polymers that alter the materials’ chemical composition and mechanical properties. The researchers can also fuse two or more printed objects together to form more complex structures.

Adaptable 3-D printing

This technique could greatly expand the complexity of objects that can be created with 3-D printing. One limitation of this technique is that the organic catalyst requires an oxygen-free environment. The researchers are now testing some other catalysts that have been reported to catalyze similar polymerizations but can be used in the presence of oxygen.

Read more at MIT News

Image Credit: Demin Liu, Jeremiah Johnson

-jk-