We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2018 was released on June 27th 2018. Its digital version will be available on July 27th 2018.

Topic: Cables, conductors and cable engineering; Tools, equipment and accessories for work with cables

Main Article
Parametrization of circuit models of Li-accumulators for electromobility
Smart Cities (part 3 – volume 1)

SVĚTLO (Light) 4/2018 was released on July 30th 2018. Its digital version will be available on August 31th 2018.

Refreshing our memory
Eccentric luminaires of René Roubíček from the years1965 till 1977
Bases of photometry – 1st part
Great personage of Czech science of times after Battle at Bílá hora: doctor, naturalist, philosopher and physicist Jan Marek Marci from Kronland

Optical radiation effects and use
The light and circadian rhythms

A way to cause graphene to self-fold into 3-D shapes

09.10.2017 | Phys.org | www.phys.org

A team of researchers with Johns Hopkins University and MIT has found a way to cause flat sheets of graphene to self-fold into 3-D geometric shapes.

One of the main benefits of the new approach is that it preserves the intrinsic properties of the graphene, which has been the goal all along—after all, what is the point of using graphene in the first place if you have to diminish its unique attributes to make it conform to a desired shape? Another benefit is that the creases can cause a band gap in the graphene, which graphene notoriously lacks in its natural state.

3-D graphen

The team notes that the technique is also compatible with traditional lithography and can be applied at the wafer scale. Also, it is highly parallel, which means it should not present manufacturing problems. They also report that they tested their technique by creating 3-D shapes that were used to hold living cells and nonlinear resistors.

Read more at Phys.org

Image Credit: Weinan Xu, Johns Hopkins University

-jk-