We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 1/2018 was released on January 16th 2018. Its digital version will be available on February 12th 2018.

Topic: Electrotechnology; Materials for electrical engineering; Wiring material

Main Article
A new electrical insulating fluid and its possible deployment in practice

SVĚTLO (Light) 6/2017 was released on December 11th 2017. Its digital version will be available on january 11th 2018.

Lighting installations
The lighting of university building Centrale Supélec in Saclay in France
The light for our future

Daylight
Application and judgment light guides Solatube®

A step toward biodegradable plastics

11.11.2016 | MIT News | news.mit.edu

MIT chemists have determined the structure of a bacterial enzyme that can produce biodegradable plastics, an advance that could help chemical engineers tweak the enzyme to make it even more industrially useful.

The enzyme generates long polymer chains that can form either hard or soft plastics, depending on the starting materials that go into them. Learning more about the enzyme’s structure could help engineers control the polymers’ composition and size, a possible step toward commercial production of these plastics, which, unlike conventional plastic formed from petroleum products, should be biodegradable.

Biodegradable plastic

The enzyme produces different types of polymers depending on the starting material, usually one or more of the numerous variants of a molecule called hydroxyalkyl-coenzyme A, where the term alkyl refers to a variable chemical group that helps determine the polymers’ properties. Some of these materials form hard plastics, while others are softer and more flexible or have elastic properties that are more similar to rubber.

The new structural information yielded by this study will have little impact on cost but may open up the possibility of other new materials and applications.

Read more at MIT News

Image Credit: MIT News

-jk-