We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2019 was released on June 26th 2019. Its digital version will be available on July 26th 2019.

Topic: Cables, conductors and cable engineering, Tools, equipment and accessories for work with cables

Main Article
Asset management and diagnostic needs in Industry 4.0

SVĚTLO (Light) 4/2019 was released on July 29th 2019. Its digital version will be available on August 29th 2019.

Lighting installations
Foxtrot controls new location of barmans
Dynamic illumination of Guardian Angels’ chapel in Sušice

Accessories of lighting installations
Safety, austerity and comfort with KNX
Worldwide first LED switching source with KNX interface from MEAN WELL producer
KNX – the system with future
Schmachtl – connector installation gesis

A soft robotic skin based on liquid transmission

14.06.2019 | TechXplore | www.techxplore.com

Researchers at the Bristol Robotics Laboratory and the University of Bristol have recently developed a new soft robotic skin-like sensor that is based on fluidic transmission. This sensor, presented at the second IEEE International Conference on Soft Robotics (RoboSoft), could have interesting applications in a variety of fields, ranging from robotics to virtual reality (VR).

"Integrating sensors in robotic hands is a difficult task because often, we need to squeeze many components into a limited space," Gabor Soter, one of the researchers who carried out the study, told TechXplore. "Our idea was to transmit the sensory signals to other parts of the body, where there is more space for the sensing and processing hardware."

Soft robotic skin

Skinflow, the sensor developed by Soter and his colleagues, is partly inspired by biological mechanisms observed in spiders. Spiders are able to transmit hydraulic pressure to different parts of their bodies for actuation purposes. In other words, they can generate pressure inside their bodies and transmit this energy to their legs in order to move them.

Read more at TechXplore

Image Credit: University of Bristol