We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2019 was released on February 13th 2019. Its digital version will be available on March 11th 2019.

Topic: Electrical appliances – switching, protective, signalling and special

Main Article
Advanced power converter topology
Smart Cities (part 7)

SVĚTLO (Light) 1/2019 was released on February 4th 2019. Its digital version will be available on March 5th 2019.

Fairs and exhibitions
Invitation at LIGHT IN ARCHITECTURE exhibition
Prolight + Sound 2019: keep up with time
The light at For Arch 2018 fair

Public lighting
Lights of towns and communities 2018 – the meeting at the round table

A Process for Capturing CO2 from the Atmosphere

08.06.2018 | Cell Press | www.cell.com

Someday, the gasoline you buy might trace its heritage to carbon dioxide pulled straight out of the sky rather than from oil pumped out of the ground. By removing emitted carbon dioxide from the atmosphere and turning it into fresh fuels, engineers at a Canadian firm have demonstrated a scalable and cost-effective way to make deep cuts in the carbon footprint of transportation with minimal disruption to existing vehicles. Their work appears June 7 in the journal Joule.

"The carbon dioxide generated via direct air capture can be combined with sequestration for carbon removal, or it can enable the production of carbon-neutral hydrocarbons, which is a way to take low-cost carbon-free power sources like solar or wind and channel them into fuels that can be used to decarbonize the transportation sector," says lead author David Keith, founder and chief scientist of Carbon Engineering, a Canadian CO2-capture and clean fuels enterprise, and a professor of applied physics and public policy at Harvard University.

Direct carbon dioxide capture

Direct air capture technology works almost exactly like it sounds. Giant fans draw ambient air into contact with an aqueous solution that picks out and traps carbon dioxide. Through heating and a handful of familiar chemical reactions, that same carbon dioxide is re-extracted and ready for further use—as a carbon source for making valuable chemicals like fuels, or for storage via a sequestration strategy of choice.

Read more at Cell Press

Image Credit: Carbon Engineering

-jk-