We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2019 was released on March 11th 2019. Its digital version will be available on March 11th 2019.

Topic: Amper 2019 – 271 International trade fair for electrical engineering

Main Article
Smart Cities (part 8)

SVĚTLO (Light) 2/2019 was released on March 15th 2019. Its digital version will be available immediately.

Architectural and scenic lighting
The architectural lighting of Bečov nad Teplou castle
Lighting design in a nutshell – Part 41
The analyse of light picture a little more theoretic

Day light
Biggest mistakes in day lighting design of buildings

A new perovskite could lead the next generation of data storage

25.11.2016 | EPFL | actu.epfl.ch

EPFL scientists have developed a new perovskite material with unique properties that can be used to build next-generation hard drives.

As we generate more and more data, we need storage systems, e.g. hard drives, with higher density and efficiency. But this also requires materials whose magnetic properties can be quickly and easily manipulated in order to write and access data on them. EPFL scientists have now developed a perovskite material whose magnetic order can be rapidly changed without disrupting it due to heating.

New perovskite material

Perovskite photovoltaics are gradually becoming a cheaper alternative to current silicon systems, drawing much interest from energy scientists. But this particular material, which is a modified version of perovskite, exhibits some unique properties that make it particularly interesting as a material to build next-generation digital storage systems.

This new crystal structure combines the advantages of both ferromagnets, whose magnetic moments are aligned in a well-defined order, and photoconductors, where light illumination generates high density free conduction electrons.

Read more at EPFL

Image Credit: EPFL

-jk-