We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2018 was released on June 27th 2018. Its digital version will be available on July 27th 2018.

Topic: Cables, conductors and cable engineering; Tools, equipment and accessories for work with cables

Main Article
Parametrization of circuit models of Li-accumulators for electromobility
Smart Cities (part 3 – volume 1)

SVĚTLO (Light) 4/2018 was released on July 30th 2018. Its digital version will be available on August 31th 2018.

Refreshing our memory
Eccentric luminaires of René Roubíček from the years1965 till 1977
Bases of photometry – 1st part
Great personage of Czech science of times after Battle at Bílá hora: doctor, naturalist, philosopher and physicist Jan Marek Marci from Kronland

Optical radiation effects and use
The light and circadian rhythms

A new bio-ink for 3D printing with stem cells

24.06.2016 | University of Bristol | www.bristol.ac.uk

Scientists at the University of Bristol have developed a new kind of bio-ink, which could eventually allow the production of complex tissues for surgical implants.

The new stem cell-containing bio ink allows 3D printing of living tissue, known as bio-printing. The new bio-ink contains two different polymer components: a natural polymer extracted from seaweed, and a sacrificial synthetic polymer used in the medical industry, and both had a role to play. The synthetic polymer causes the bio-ink to change from liquid to solid when the temperature is raised, and the seaweed polymer provides structural support when the cell nutrients are introduced.

New bio-ink for 3D printers

The team were able to differentiate the stem cells into osteoblasts – a cell that secretes the substance of bone – and chondrocytes – cells that have secreted the matrix of cartilage and become embedded in it – to engineer 3D printed tissue structures over five weeks, including a full-size tracheal cartilage ring.

The team's findings could eventually lead to the ability to print complex tissues using the patient's own stem cells for surgical bone or cartilage implants, which in turn could used in knee and hip surgeries.

Read more at University of Bristol

Image Credit: University of Bristol

-jk-