We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 5/2018 was released on May 16th 2018. Its digital version will be available on June 6th 2018.

Topic: Lightning and overvoltage protection; EFS, EPS; ELO SYS 2018

Main Article
Energy router and its role in smart grids
Smart Cities (part 2 – volume 1)

SVĚTLO (Light) 2/2018 was released on March 16th 2018. Its digital version will be available immediately.

Fairs and exhibitions
Interior elite again after year in Letňany

Luminaires and luminous apparatuses
Emergency lighting
The future of industrial lighting has name INNOVA
GOLY luminaire – the practical high bay luminaire
McLED® – brand name of first rate quality LED lighting
VOLGA EU luminaire our choice for Europe

3-D printing with cellulose

06.03.2017 | MIT News | news.mit.edu

For centuries, cellulose has formed the basis of the world's most abundantly printed-on material: paper. Now, thanks to new research at MIT, it may also become an abundant material to print with—potentially providing a renewable, biodegradable alternative to the polymers currently used in 3-D printing materials.

The MIT team chose to work with cellulose acetate—a material that is easily made from cellulose and is already widely produced and readily available. Essentially, the number of hydrogen bonds in this material has been reduced by the acetate groups. Cellulose acetate can be dissolved in acetone and extruded through a nozzle. As the acetone quickly evaporates, the cellulose acetate solidifies in place. A subsequent optional treatment replaces the acetate groups and increases the strength of the printed parts.

3-D printing with cellulose

To demonstrate the chemical versatility of the production process, researchers added an extra dimension to the innovation. By adding a small amount of antimicrobial dye to the cellulose acetate ink, they 3-D-printed a pair of surgical tweezers with antimicrobial functionality.

Read more at MIT News

Image Credit: MIT News

-jk-