We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2018 was released on June 27th 2018. Its digital version will be available on July 27th 2018.

Topic: Cables, conductors and cable engineering; Tools, equipment and accessories for work with cables

Main Article
Parametrization of circuit models of Li-accumulators for electromobility
Smart Cities (part 3 – volume 1)

SVĚTLO (Light) 4/2018 was released on July 30th 2018. Its digital version will be available on August 31th 2018.

Refreshing our memory
Eccentric luminaires of René Roubíček from the years1965 till 1977
Bases of photometry – 1st part
Great personage of Czech science of times after Battle at Bílá hora: doctor, naturalist, philosopher and physicist Jan Marek Marci from Kronland

Optical radiation effects and use
The light and circadian rhythms

3-D-printed device builds better nanofibers

03.11.2017 | MIT | news.mit.edu

Meshes made from fibers with nanometer-scale diameters have a wide range of potential applications, including tissue engineering, water filtration, solar cells, and even body armor. But their commercialization has been hampered by inefficient manufacturing techniques.

In the latest issue of the journal Nanotechnology, MIT researchers describe a new device for producing nanofiber meshes, which matches the production rate and power efficiency of its best-performing predecessor — but significantly reduces variation in the fibers’ diameters, an important consideration in most applications.

3-D printed device

But whereas the predecessor device, from the same MIT group, was etched into silicon through a complex process that required an airlocked “clean room,” the new device was built using a $3,500 commercial 3-D printer. The work thus points toward nanofiber manufacture that is not only more reliable but also much cheaper. The new device consists of an array of small nozzles through which a fluid containing particles of a polymer are pumped. As such, it is what’s known as a microfluidic device.

Read more at MIT

Image Credit: Luis Fernando Velásquez-García

-jk-