We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2019 was released on June 26th 2019. Its digital version will be available on July 26th 2019.

Topic: Cables, conductors and cable engineering, Tools, equipment and accessories for work with cables

Main Article
Asset management and diagnostic needs in Industry 4.0

SVĚTLO (Light) 4/2019 was released on July 29th 2019. Its digital version will be available on August 29th 2019.

Lighting installations
Foxtrot controls new location of barmans
Dynamic illumination of Guardian Angels’ chapel in Sušice

Accessories of lighting installations
Safety, austerity and comfort with KNX
Worldwide first LED switching source with KNX interface from MEAN WELL producer
KNX – the system with future
Schmachtl – connector installation gesis

3-D printed active metamaterials for sound and vibration control

13.04.2018 | University of Southern California | viterbischool.usc.edu

A team led by USC Viterbi researchers developed 3-D printed acoustic metamaterials that can be switched on and off remotely using a magnetic field.

Researchers have been pushing the capabilities of materials by carefully designing precise structures that exhibit abnormal properties that can control acoustic or optical waves. However, these metamaterials are constructed in fixed geometries, meaning their unique abilities are always fixed. Now, new 3-D printed metamaterial developed by a team led by USC Viterbi researchers can be remotely switched between active control and passive states.

3-D printed active metamaterials

Metamaterials can be used to manipulate wave phenomena such as radar, sound and light and have been used to develop technology such as cloaking devices and improved communication systems. The team’s metamaterials are able to control environmental sounds and structural vibrations, which have similar waveforms. By 3-D printing a deformable material containing iron particles in a lattice structure, their metamaterials can be compressed using a magnetic field.

Read more at University of Southern California

Image Credit: Qiming Wang

-jk-