We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2020 was released on February 12th 2020. Its digital version will be available on March 12th 2020.

Topic: Electrical apparatus, Internet of Things; Medical technologies

Main Article
Monitoring vacancy of an intelligent building

SVĚTLO (Light) 1/2020 was released on February 3th 2020. Its digital version will be available on March 3th 2020.

Fairs and exhibitions
Invitation for Light+Building 2020 – attendant programme
Prolicht+Sound fair celebrates the 25th birthday
FOR CITY 2020 introduces oneself in parallel to FOR ARCH fair

Luminaires and light apparatuses
Modern trends in automobile headlamps

3-D printed active metamaterials for sound and vibration control

13.04.2018 | University of Southern California | viterbischool.usc.edu

A team led by USC Viterbi researchers developed 3-D printed acoustic metamaterials that can be switched on and off remotely using a magnetic field.

Researchers have been pushing the capabilities of materials by carefully designing precise structures that exhibit abnormal properties that can control acoustic or optical waves. However, these metamaterials are constructed in fixed geometries, meaning their unique abilities are always fixed. Now, new 3-D printed metamaterial developed by a team led by USC Viterbi researchers can be remotely switched between active control and passive states.

3-D printed active metamaterials

Metamaterials can be used to manipulate wave phenomena such as radar, sound and light and have been used to develop technology such as cloaking devices and improved communication systems. The team’s metamaterials are able to control environmental sounds and structural vibrations, which have similar waveforms. By 3-D printing a deformable material containing iron particles in a lattice structure, their metamaterials can be compressed using a magnetic field.

Read more at University of Southern California

Image Credit: Qiming Wang

-jk-