We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2021 was released on December 1st 2021. Its digital version will be available immediately.

Topic: Measurement, testing, quality care

Market, trade, business
What to keep in mind when changing energy providers

SVĚTLO (Light) 6/2021 was released 11.29.2021. Its digital version will be available immediately.

Fairs and exhibitions
Designblok, Prague International Design Festival 2021
Journal Světlo Competition about the best exhibit in branch of light and lighting at FOR ARCH and FOR INTERIOR fair

Professional literature
The new date format for luminaires description

2D materials capable of forming complex 3D shapes

8. 2. 2021 | University of Texas at Arlington | www.uta.edu

University of Texas at Arlington researchers have developed a technique that programs 2D materials to transform into complex 3D shapes.

Kyungsuk Yum, an associate professor in the Materials Science and Engineering Department, and his team have developed the 2D material programming technique for 3D shaping. It allows the team to print 2D materials encoded with spatially controlled in-plane growth or contraction that can transform to programmed 3D structures. They were able to form 3D structures shaped like automobiles, stingrays, and human faces. To physically realize the concept of 2D material programming, they used a digital light 4D printing method developed by Yum.Making 3D shapes out of 2D materials

The goal of the work is to create synthetic materials that can mimic how living organisms expand and contract soft tissues and thus achieve complex 3D movements and functions. Programming thin sheets, or 2D materials, to morph into 3D shapes can enable new technologies for soft robotics, deployable systems, and biomimetic manufacturing, which produces synthetic products that mimic biological processes.

Read more at University of Texas at Arlington

Image Credit: University of Texas at Arlington