Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 12/2017 vyšlo tiskem 6. 12. 2017. V elektronické verzi na webu od 5. 1. 2018. 

Téma: Měření, měřicí přístroje a technika; Zkušebnictví a diagnostika

Hlavní článek
Meranie točivých strojov s použitím metódy SFRA
Aplikační možnosti ultrakapacitorů a akumulátorů LiFePO4 v trolejbusové síti Dopravního podniku města Brna

Číslo 5/2017 vyšlo tiskem 18. 9. 2017. V elektronické verzi na webu bude 18. 9. 2017.

Svítidla a světelné přístroje
MAYBE STYLE představuje LED designová svítidla německého výrobce Lightnet
TREVOS – nová svítidla pro průmysl i kanceláře
Kolik typů LED panelů vyrábí MODUS?
Inteligentní LED svítidlo RENO PROFI

Osvětlení interiérů
Světlo v bytovém interiéru – otázky a odpovědi

Aktuality

Temelín dosáhl nejvyšší roční výroby Elektřinu, která by českým domácnostem vystačila na téměř 12 měsíců, vyrobila od začátku…

MONETA Money Bank se jako první firma v ČR rozhodla zcela přejít na elektromobily MONETA Money Bank se jako první společnost v České republice oficiálně rozhodla, že do…

ŠKODA AUTO bude od roku 2020 v Mladé Boleslavi vyrábět vozy s čistě elektrickým pohonem ŠKODA AUTO bude vozy s čistě elektrickým pohonem vyrábět v závodě v Mladé Boleslavi. Již…

Soutěž o nejlepší realizovaný projekt KNX instalace Spolek KNX národní skupina České republiky, z. s. vyhlásil soutěž o nejlepší projekt…

Více aktualit

Viry pomohou zvýšit kapacitu lithium-vzduchových baterií

19.11.2013 | |

Vědci z MIT pravděpodobně nalezli způsob, jak pomoci speciálně uzpůsobených virů vylepšit vlastnosti lithium-vzduchových baterií. 

Odhaduje se, že by objev mohl znatelně zvýšit kapacitu lithium-vzduchových baterií. V posledních letech jsou lithium-vzduchové baterie velmi populární oblastí výzkumu. Slibují totiž vysoký výkon, aniž by docházelo k nárůstu hmotnosti a objemu. To by velmi pomohlo například elektromobilům, jejichž dojezd na jedno nabití stále ještě není dostatečný. Aby však vznikla lithium-vzduchová baterie, která bude skutečně použitelná v reálných podmínkách, hledají vědci lepší a trvanlivější materiály pro jejich elektrody.

Nyní vědci vyrobili nanovlákna o průměru asi 80 nanometrů, pro něž použili geneticky modifikované viry M13. Tyto viry totiž dokáží zachycovat molekuly kovů rozptýlené ve vodě a spojovat je do strukturovaných útvarů. V tomto konkrétním případě byla s využitím virů vyrobena vlákna oxidu manganu. Na rozdíl od vláken vyrobených klasickým způsobem mají nanovlákna z virů drsný a ostnatý povrch, čímž se dále zvětšuje plocha jejich povrchu.

Toto zvětšení povrchu by mělo podstatně zlepšit vlastnosti při nabíjení, ale také při opačném procesu, tedy odevzdávání energie. Na rozdíl od konvenčních metod výroby, které vyžadují energeticky náročné procedury probíhající za vysokých teplot a za pomoci různých chemikálií, tento proces může běžet klidně za pokojové teploty ve vodě. V poslední fázi pak jen stačí přidat malé množství vhodného kovu – v tomto případě to bylo paladium, které podpoří elektrickou vodivost nanovláken a katalyzuje reakce, které probíhají během nabíjení a vybíjení. Tento nový proces výrazně snižuje množství drahých materiálů, které jsou potřeba.

Objev dá možná vzniknout baterii, která bude mít dvoj- až trojnásobnou hustotu energie, což je zhruba tolik, kolik lze dnes skladovat jen v těch nejlepších lithium iontových bateriích.

Více na scienceworldreport.com nebo v tiskové zprávě MIT