Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 1/2019 vyšlo tiskem 16. 1. 2019. V elektronické verzi na webu 12. 2. 2019. 

Téma: Elektrotechnologie; Materiály pro elektrotechniku; Elektroinstalační materiál

Hlavní článek
Elektricky vodivá lepidla pro elektrotechniku
Smart Cities (6. část)

Číslo 6/2018 vyšlo tiskem 3. 12. 2018. V elektronické verzi na webu 4. 1. 2019.

Svítidla a světelné přístroje
Modulární světlomety Siteco
Dekorativní svítidlo PRESBETON H-E-X z ucelené řady městského mobiliáře
LED svítidla ESALITE – revoluce v oblasti průmyslového osvětlení

Denní světlo
O mediánové osvětlenosti denním světlem
Odborný seminář Denní světlo v praxi

Aktuality

Personální inzerce Společnost AZ Elektrostav, a.s., z Nymburka, a její dceřiná společnost ELTRAF, a.s., se…

Fórum automatizace 2019 ukáže perspektivy a úskalí digitalizace Cesta k digitalizaci v průmyslu, infrastruktuře, dopravě a dalších oborech může být i…

Ing. Martin Durčák zvolen předsedou představenstva ČEPS, a.s. Představenstvo společnosti ČEPS zvolilo na svém mimořádném zasedání předsedou…

ČEZ Distribuce se cvičně bránila kybernetickému útoku Hrozba kybernetických útoků je v poslední době stále častěji skloňované téma. Hned…

Více aktualit

Viry pomohou zvýšit kapacitu lithium-vzduchových baterií

19.11.2013 | |

Vědci z MIT pravděpodobně nalezli způsob, jak pomoci speciálně uzpůsobených virů vylepšit vlastnosti lithium-vzduchových baterií. 

Odhaduje se, že by objev mohl znatelně zvýšit kapacitu lithium-vzduchových baterií. V posledních letech jsou lithium-vzduchové baterie velmi populární oblastí výzkumu. Slibují totiž vysoký výkon, aniž by docházelo k nárůstu hmotnosti a objemu. To by velmi pomohlo například elektromobilům, jejichž dojezd na jedno nabití stále ještě není dostatečný. Aby však vznikla lithium-vzduchová baterie, která bude skutečně použitelná v reálných podmínkách, hledají vědci lepší a trvanlivější materiály pro jejich elektrody.

Nyní vědci vyrobili nanovlákna o průměru asi 80 nanometrů, pro něž použili geneticky modifikované viry M13. Tyto viry totiž dokáží zachycovat molekuly kovů rozptýlené ve vodě a spojovat je do strukturovaných útvarů. V tomto konkrétním případě byla s využitím virů vyrobena vlákna oxidu manganu. Na rozdíl od vláken vyrobených klasickým způsobem mají nanovlákna z virů drsný a ostnatý povrch, čímž se dále zvětšuje plocha jejich povrchu.

Toto zvětšení povrchu by mělo podstatně zlepšit vlastnosti při nabíjení, ale také při opačném procesu, tedy odevzdávání energie. Na rozdíl od konvenčních metod výroby, které vyžadují energeticky náročné procedury probíhající za vysokých teplot a za pomoci různých chemikálií, tento proces může běžet klidně za pokojové teploty ve vodě. V poslední fázi pak jen stačí přidat malé množství vhodného kovu – v tomto případě to bylo paladium, které podpoří elektrickou vodivost nanovláken a katalyzuje reakce, které probíhají během nabíjení a vybíjení. Tento nový proces výrazně snižuje množství drahých materiálů, které jsou potřeba.

Objev dá možná vzniknout baterii, která bude mít dvoj- až trojnásobnou hustotu energie, což je zhruba tolik, kolik lze dnes skladovat jen v těch nejlepších lithium iontových bateriích.

Více na scienceworldreport.com nebo v tiskové zprávě MIT