Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 4/2017 vyšlo tiskem 12. 4. 2017. V elektronické verzi na webu od 5. 5. 2017. 

Téma: Elektroinstalace; Inteligentní budovy; Stavební veletrhy Brno 2017

Hlavní článek
Návrh aplikace pro monitorování technologických procesů v administrativní budově

Číslo 2/2017 vyšlo tiskem 17. 3. 2017. V elektronické verzi na webu bude ihned.

Veletrhy a výstavy
Inspirativní osvětlení ze zahraničních veletrhů 

Příslušenství osvětlovacích soustav
Na osvětlení provozu lze šetřit s minimem investic
Maxos fusion – nový rychlomontážní systém Philips
Inteligentní řešení DALISYS® pro řízení osvětlení

Aktuality

Vadné adaptéry Tesla poškozují rychlodobíjecí stanice V uplynulých dnech na rychlodobíjecích stanicích ČEZ zaznamenal už několikátý případ…

Jaký byl Veletrh Dřevostavby a Moderní vytápění 2017? Souběh veletrhů DŘEVOSTAVBY a MODERNÍ VYTÁPĚNÍ je určen všem, kteří řeší stavbu,…

MSV 2017 zacílí na Průmysl 4.0, automatizaci, environmentální technologie, dopravu a logistiku Již potřetí se na MSV 2017 upře pozornost na nové trendy průmyslové výroby. Průmysl 4.0 s…

Současné možnosti elektromobility představí AMPER Motion 2017 Největší přehlídka elektromobility v ČR proběhne 21.- 24. 3. na brněnském výstavišti a…

Více aktualit

Viry pomohou zvýšit kapacitu lithium-vzduchových baterií

19.11.2013 | |

Vědci z MIT pravděpodobně nalezli způsob, jak pomoci speciálně uzpůsobených virů vylepšit vlastnosti lithium-vzduchových baterií. 

Odhaduje se, že by objev mohl znatelně zvýšit kapacitu lithium-vzduchových baterií. V posledních letech jsou lithium-vzduchové baterie velmi populární oblastí výzkumu. Slibují totiž vysoký výkon, aniž by docházelo k nárůstu hmotnosti a objemu. To by velmi pomohlo například elektromobilům, jejichž dojezd na jedno nabití stále ještě není dostatečný. Aby však vznikla lithium-vzduchová baterie, která bude skutečně použitelná v reálných podmínkách, hledají vědci lepší a trvanlivější materiály pro jejich elektrody.

Nyní vědci vyrobili nanovlákna o průměru asi 80 nanometrů, pro něž použili geneticky modifikované viry M13. Tyto viry totiž dokáží zachycovat molekuly kovů rozptýlené ve vodě a spojovat je do strukturovaných útvarů. V tomto konkrétním případě byla s využitím virů vyrobena vlákna oxidu manganu. Na rozdíl od vláken vyrobených klasickým způsobem mají nanovlákna z virů drsný a ostnatý povrch, čímž se dále zvětšuje plocha jejich povrchu.

Toto zvětšení povrchu by mělo podstatně zlepšit vlastnosti při nabíjení, ale také při opačném procesu, tedy odevzdávání energie. Na rozdíl od konvenčních metod výroby, které vyžadují energeticky náročné procedury probíhající za vysokých teplot a za pomoci různých chemikálií, tento proces může běžet klidně za pokojové teploty ve vodě. V poslední fázi pak jen stačí přidat malé množství vhodného kovu – v tomto případě to bylo paladium, které podpoří elektrickou vodivost nanovláken a katalyzuje reakce, které probíhají během nabíjení a vybíjení. Tento nový proces výrazně snižuje množství drahých materiálů, které jsou potřeba.

Objev dá možná vzniknout baterii, která bude mít dvoj- až trojnásobnou hustotu energie, což je zhruba tolik, kolik lze dnes skladovat jen v těch nejlepších lithium iontových bateriích.

Více na scienceworldreport.com nebo v tiskové zprávě MIT