Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 11/2016 vyšlo tiskem 7. 11. 2016. V elektronické verzi na webu od 1. 12. 2016. 

Téma: Rozváděče a rozváděčová technika; Točivé stroje a výkonová elektronika

Hlavní článek
Lithiové trakční akumulátory pro elektromobilitu

Číslo 6/2016 vyšlo tiskem 5. 12. 2016. V elektronické verzi na webu od 5. 1. 2017.

Osvětlení interiérů
Seminář Interiéry 2016 – páté výročí
Součinnost bytového interiéru a osvětlení 

Normy, předpisy a doporučení
Nové normy pro osvětlení pozemních komunikací

Aktuality

Svítící fasáda FEL ČVUT nabídne veřejnosti interaktivní program s názvem Creative Colours of FEL Dne 13. prosince v 16.30 hodin se v pražských Dejvicích veřejnosti představí interaktivní…

Fakulta elektrotechnická je na špici excelentního výzkumu na ČVUT Expertní panely Rady vlády pro výzkum, vývoj, inovace (RVVI) vybraly ve II. pilíři…

Švýcaři v referendu odmítli uzavřít jaderné elektrárny dříve V referendu hlasovalo 45 procent obyvatel, z toho 54,2 procent voličů řeklo návrhu na…

Fakulta elektrotechnická ČVUT v Praze pořádá 25. 11. 2016 den otevřených dveří Fakulta elektrotechnická ČVUT v Praze pořádá 25. listopadu od 8.30 hodin Den otevřených…

Více aktualit

Vědcům se podařilo navýšit výdrž baterie díky použití kvantových teček vyrobených z pyritu

12.11.2015 | Vanderbilt University | news.vanderbilt.edu

Přidáte-li kvantové tečky - tedy nanokrystaly 10.000 krát menší než šířka lidského vlasu - do baterie mobilního telefonu, nabije se za 30 vteřin, ale tento efekt působí jen po dobu několika nabíjecích cyklů.

V aktuálním vydání časopisu ACS Nano nyní vyšel článek o práci výzkumníků z Vanderbilt University, kteří nalezli způsob, jakým tento problém překonat: Jsou-li kvantové tečky vyrobeny z pyritu, běžně známého jako kočičí zlato, baterie se nabíjí rychleji a efekt je rozšířen na několik desítek nabíjecích cyklů.

Vědci navýšili efektivitu baterie

Výzkumný tým vedený profesorem strojního inženýrství Cary Pintem a postgraduální studentkou Annou Douglas se začal o pyrit zajímat proto, že tento materiál se na zemi vyskytuje v hojném množství. Pyrit se získává jako vedlejší produkt při těžbě uhlí a je tak levný, že se používá v lithiových bateriích, které dnes běžně kupujeme v obchodech.

Pokud jsou částice příliš malé, obecně řečeno pod 10 nanometry (což odpovídá asi čtyřiceti až padesátině šířky atomu), nanočástice začnou chemicky reagovat s elektrolyty a mohou se tedy nabít a vybít jen v řádu několika málo jednotek.

Profesor Douglas využil své zkušenosti z oblasti syntetizace nanočástic a pokusil se o prozkoumání této „nepatrné“ oblasti. Začal tím, že přidal miliony kvantových teček pyritu různých velikostí do standardní lithiové knoflíkové baterie, která se dnes běžně používá v hodinkách, dálkových ovladačích nebo LED svítilnách. Jako nejúčinnější se osvědčily nanokrystaly o velikosti 4,5 nanometru, které podstatně zlepšily dobu nabíjení a nabíjecí cyklus baterie.

Celý článek na Vanderbilt University

Image Credit: Vanderbilt University

-jk-