Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 11/2016 vyšlo tiskem 7. 11. 2016. V elektronické verzi na webu od 1. 12. 2016. 

Téma: Rozváděče a rozváděčová technika; Točivé stroje a výkonová elektronika

Hlavní článek
Lithiové trakční akumulátory pro elektromobilitu

Číslo 5/2016 vyšlo v tištěné podobě 19. září 2016. Na internetu v elektronické verzi bude k dispozici ihned.

Normy, předpisy a doporučení

Nařízení č. 10/2016 (pražské stavební předpisy) z hlediska stavební světelné techniky

 

Světelnětechnická zařízení

PROLICHT CZECH – dodavatel osvětlení pro nové kanceláře SAP

Posviťte si v práci na práci

Moderní a úsporné LED osvětlení bazénové haly

Aktuality

Fakulta elektrotechnická je na špici excelentního výzkumu na ČVUT Expertní panely Rady vlády pro výzkum, vývoj, inovace (RVVI) vybraly ve II. pilíři…

Švýcaři v referendu odmítli uzavřít jaderné elektrárny dříve V referendu hlasovalo 45 procent obyvatel, z toho 54,2 procent voličů řeklo návrhu na…

Fakulta elektrotechnická ČVUT v Praze pořádá 25. 11. 2016 den otevřených dveří Fakulta elektrotechnická ČVUT v Praze pořádá 25. listopadu od 8.30 hodin Den otevřených…

Ocenění v soutěži České hlavičky získal za elektromagnetický urychlovač student FEL ČVUT Student programu Elektronika a komunikace Fakulty elektrotechnické ČVUT v Praze Vojtěch…

Více aktualit

Vědci zkoumají materiál, který po zahřátí zmenší svůj objem

14.10.2015 | UCONN | today.uconn.edu

Většina materiálů se při zahřívání roztahuje a při ochlazování naopak svůj objem zmenší. Jason Hancock z University of Connecticut ale zkoumá hmotu, která reaguje obráceně: při zahřátí se smršťuje.

I když teplotní roztažnost a praskání a deformace, jakožto její důsledek jsou běžným efektem - můžeme to pozorovat např. u budov, mostů, elektroniky a téměř každého materiálu, který je vystaven výkyvům teplot - fyzikové jen obtížně vysvětlují, proč se pevné látky takto chovají.

Materiál, který se po zahřátí smršťuje

Hancock a jeho tým použili fluorid skanditý - sloučeninu s negativní tepelnou roztažností. Jejich výzkum může vést k lepšímu porozumění toho, proč materiály při rozdílech teplot mění objem a výsledky výzkumu mohou vést např. k výrobě odolnější elektroniky.

Abychom lépe porozuměli tomu, jak fungují pevné materiály jako sklo, kov a kámen, stačí si představit, že se skládají z atomů, které jsou navzájem spojeny pružinami. Tyto pružiny se v reakci na teplo roztahují a ohýbají. Ale protože každá pružina při roztažení vyvíjí tlak na sousední pružinu - a tyto sousední pružiny se rozpínají stejnou měrou a vyvíjí stejný tlak na každou další sousední pružinu - pak by síla, kterou na sebe pružiny navzájem působí, měla být symetrická a materiál by se neměl roztahovat nebo smršťovat.

Celý článek na UCONN

Image Credit: UCONN

-jk-