Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 2/2018 vyšlo tiskem 14. 2. 2018. V elektronické verzi na webu od 12. 3. 2018. 

Téma: Elektrické přístroje; Přístroje pro chytré sítě; Internet věcí

Hlavní článek
Řízení toku výkonu v síti pomocí výkonových měničů

Číslo 1/2018 vyšlo tiskem 5. 2. 2018. V elektronické verzi na webu bude 5. 3. 2018.

Architekturní a scénické osvětlení
Mexické světlo

Světelný design v kostce Část 34
Světelnětechnická dokumentace – část 2
Schémata pro scénické osvětlení

Svítidla a světelné přístroje
LED svítidla NITEKO – zaručená životnost a teple bílé světlo nejen pro veřejné osvětlení

Aktuality

Brněnská technika představila novou kampaň jako generační výpověď mladých Nová náborová kampaň brněnské techniky s názvem Generace VUT upozorňuje na časté…

Výroba z biomasy vzrostla o 14 %, dodala čistou elektřinu pro 230 tisíc domácností Téměř 573 milionů kWh ekologické elektřiny vyprodukovaly v loňském roce výrobny Skupiny…

Dva veletrhy úsporného, komfortního a moderního bydlení – DŘEVOSTAVBY, MODERNÍ VYTÁPĚNÍ 13. ročník veletrhu DŘEVOSTAVBY se koná souběžně s veletrhem MODERNÍ VYTÁPĚNÍ. Společná…

Synergie oborů na veletrhu FOR ARCH přináší větší zájem vystavovatelů Mezinárodní stavební veletrh FOR ARCH se uskuteční v PVA EXPO PRAHA v Letňanech 18.–22.…

Více aktualit

Vědci zkoumají materiál, který po zahřátí zmenší svůj objem

14.10.2015 | UCONN | today.uconn.edu

Většina materiálů se při zahřívání roztahuje a při ochlazování naopak svůj objem zmenší. Jason Hancock z University of Connecticut ale zkoumá hmotu, která reaguje obráceně: při zahřátí se smršťuje.

I když teplotní roztažnost a praskání a deformace, jakožto její důsledek jsou běžným efektem - můžeme to pozorovat např. u budov, mostů, elektroniky a téměř každého materiálu, který je vystaven výkyvům teplot - fyzikové jen obtížně vysvětlují, proč se pevné látky takto chovají.

Materiál, který se po zahřátí smršťuje

Hancock a jeho tým použili fluorid skanditý - sloučeninu s negativní tepelnou roztažností. Jejich výzkum může vést k lepšímu porozumění toho, proč materiály při rozdílech teplot mění objem a výsledky výzkumu mohou vést např. k výrobě odolnější elektroniky.

Abychom lépe porozuměli tomu, jak fungují pevné materiály jako sklo, kov a kámen, stačí si představit, že se skládají z atomů, které jsou navzájem spojeny pružinami. Tyto pružiny se v reakci na teplo roztahují a ohýbají. Ale protože každá pružina při roztažení vyvíjí tlak na sousední pružinu - a tyto sousední pružiny se rozpínají stejnou měrou a vyvíjí stejný tlak na každou další sousední pružinu - pak by síla, kterou na sebe pružiny navzájem působí, měla být symetrická a materiál by se neměl roztahovat nebo smršťovat.

Celý článek na UCONN

Image Credit: UCONN

-jk-