Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 7/2019 vyšlo tiskem 26. 6. 2019. V elektronické verzi na webu 26. 7. 2019. 

Téma: Kabely, vodiče a kabelová technika; Nářadí, nástroje a zařízení pro práci s kabely

Hlavní článek
Správa aktiv a potřeba diagnostiky v Průmyslu 4.0

Číslo 4/2019 vyšlo tiskem 29. 7. 2019. V elektronické verzi na webu 29. 8. 2019.

Světelně-technická zařízení
Foxtrot řídí nové sídlo asociace barmanů
Dynamické osvětlení kaple Anděla Strážce v Sušici

Příslušenství osvětlovacích soustav
Bezpečnost, úspornost a komfort s KNX
Celosvětově první LED spínaný zdroj s rozhraním KNX od výrobce MEAN WELL
KNX – systém s budoucností
Schmachtl – konektorová instalace gesis

Aktuality

Společnost ABB jmenovala generálním ředitelem Björna Rosengrena Představenstvo společnosti ABB jednohlasně jmenovalo Björna Rosengrena generálním…

Studentské formule ČVUT v Praze přivezly z Mostu zlatou a stříbrnou medaili Ve dnech 13. až 17. srpna se na polygonu u Autodromu Most konal mezinárodní závod…

Nový pobočný spolek ČSO – region Praha Po mnoha letech existence České společnosti pro osvětlování byl v červnu tohoto roku…

Digitální továrna 2.0 na MSV 2019 Digitální továrna 2.0 je jedním z hlavních témat Mezinárodního strojírenského veletrhu…

Více aktualit

Vědci zkoumají materiál, který po zahřátí zmenší svůj objem

14.10.2015 | UCONN | today.uconn.edu

Většina materiálů se při zahřívání roztahuje a při ochlazování naopak svůj objem zmenší. Jason Hancock z University of Connecticut ale zkoumá hmotu, která reaguje obráceně: při zahřátí se smršťuje.

I když teplotní roztažnost a praskání a deformace, jakožto její důsledek jsou běžným efektem - můžeme to pozorovat např. u budov, mostů, elektroniky a téměř každého materiálu, který je vystaven výkyvům teplot - fyzikové jen obtížně vysvětlují, proč se pevné látky takto chovají.

Materiál, který se po zahřátí smršťuje

Hancock a jeho tým použili fluorid skanditý - sloučeninu s negativní tepelnou roztažností. Jejich výzkum může vést k lepšímu porozumění toho, proč materiály při rozdílech teplot mění objem a výsledky výzkumu mohou vést např. k výrobě odolnější elektroniky.

Abychom lépe porozuměli tomu, jak fungují pevné materiály jako sklo, kov a kámen, stačí si představit, že se skládají z atomů, které jsou navzájem spojeny pružinami. Tyto pružiny se v reakci na teplo roztahují a ohýbají. Ale protože každá pružina při roztažení vyvíjí tlak na sousední pružinu - a tyto sousední pružiny se rozpínají stejnou měrou a vyvíjí stejný tlak na každou další sousední pružinu - pak by síla, kterou na sebe pružiny navzájem působí, měla být symetrická a materiál by se neměl roztahovat nebo smršťovat.

Celý článek na UCONN

Image Credit: UCONN

-jk-