Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 12/2018 vyšlo tiskem 5. 12. 2018. V elektronické verzi na webu 5. 1. 2019. 

Téma: Měření a měřicí přístroje; Zkušebnictví a diagnostika

Hlavní článek
Termovízne merania v energetike
Smart Cities (5. část)

Číslo 6/2018 vyšlo tiskem 3. 12. 2018. V elektronické verzi na webu 4. 1. 2019.

Svítidla a světelné přístroje
Modulární světlomety Siteco
Dekorativní svítidlo PRESBETON H-E-X z ucelené řady městského mobiliáře
LED svítidla ESALITE – revoluce v oblasti průmyslového osvětlení

Denní světlo
O mediánové osvětlenosti denním světlem
Odborný seminář Denní světlo v praxi

Aktuality

Elektromobil nabitý za 30 minut Společnost ABB jako celosvětový lídr v oblasti e-mobility pro hromadnou i osobní přepravu…

Zavedení družicové navigace na pražské tramvaje může zvýšit jejich bezpečnost Technologii dnes otestovali odborníci z Fakulty elektrotechnické ČVUT v Praze ve…

ŠKODA AUTO DigiLab začíná v Praze testovat mobilní nabíjecí stanice pro elektromobily ŠKODA AUTO DigiLab spustila v Praze pilotní fázi nového projektu mobilních nabíjecích…

Nejlepší projekt energetických úspor na Slovensku je z dílny ENESA z ČEZ ESCO V Bratislavě se předávaly ceny za nejlepší slovenské energeticky úsporné projekty. Letos…

Více aktualit

Vědci zkoumají materiál, který po zahřátí zmenší svůj objem

14.10.2015 | UCONN | today.uconn.edu

Většina materiálů se při zahřívání roztahuje a při ochlazování naopak svůj objem zmenší. Jason Hancock z University of Connecticut ale zkoumá hmotu, která reaguje obráceně: při zahřátí se smršťuje.

I když teplotní roztažnost a praskání a deformace, jakožto její důsledek jsou běžným efektem - můžeme to pozorovat např. u budov, mostů, elektroniky a téměř každého materiálu, který je vystaven výkyvům teplot - fyzikové jen obtížně vysvětlují, proč se pevné látky takto chovají.

Materiál, který se po zahřátí smršťuje

Hancock a jeho tým použili fluorid skanditý - sloučeninu s negativní tepelnou roztažností. Jejich výzkum může vést k lepšímu porozumění toho, proč materiály při rozdílech teplot mění objem a výsledky výzkumu mohou vést např. k výrobě odolnější elektroniky.

Abychom lépe porozuměli tomu, jak fungují pevné materiály jako sklo, kov a kámen, stačí si představit, že se skládají z atomů, které jsou navzájem spojeny pružinami. Tyto pružiny se v reakci na teplo roztahují a ohýbají. Ale protože každá pružina při roztažení vyvíjí tlak na sousední pružinu - a tyto sousední pružiny se rozpínají stejnou měrou a vyvíjí stejný tlak na každou další sousední pružinu - pak by síla, kterou na sebe pružiny navzájem působí, měla být symetrická a materiál by se neměl roztahovat nebo smršťovat.

Celý článek na UCONN

Image Credit: UCONN

-jk-