Aktuální vydání

Číslo 8-9/2020 vyšlo tiskem 3. 9. 2020. V elektronické verzi na webu ihned. 

Téma: Elektrotechnika v průmyslu; Průmyslové automatizační prvky

Trh, obchod, podnikání
Digitální transformace

Číslo 4-5/2020 vyšlo tiskem 18. 9. 2020. V elektronické verzi na webu ihned.

Účinky a užití optického záření
Rostliny a světlo v biofilním interiéru Část 12
Rostliny a světlo ve veřejných prostorách
Melanopická denná osvetlenosť v budovách

Veletrhy a výstavy
FOR INTERIOR 2020: Inspirace pro bydlení a trendy světa nábytku a interiérů

Vědci zkoumají materiál, který po zahřátí zmenší svůj objem

14. 10. 2015 | UCONN | today.uconn.edu

Většina materiálů se při zahřívání roztahuje a při ochlazování naopak svůj objem zmenší. Jason Hancock z University of Connecticut ale zkoumá hmotu, která reaguje obráceně: při zahřátí se smršťuje.

I když teplotní roztažnost a praskání a deformace, jakožto její důsledek jsou běžným efektem - můžeme to pozorovat např. u budov, mostů, elektroniky a téměř každého materiálu, který je vystaven výkyvům teplot - fyzikové jen obtížně vysvětlují, proč se pevné látky takto chovají.

Materiál, který se po zahřátí smršťuje

Hancock a jeho tým použili fluorid skanditý - sloučeninu s negativní tepelnou roztažností. Jejich výzkum může vést k lepšímu porozumění toho, proč materiály při rozdílech teplot mění objem a výsledky výzkumu mohou vést např. k výrobě odolnější elektroniky.

Abychom lépe porozuměli tomu, jak fungují pevné materiály jako sklo, kov a kámen, stačí si představit, že se skládají z atomů, které jsou navzájem spojeny pružinami. Tyto pružiny se v reakci na teplo roztahují a ohýbají. Ale protože každá pružina při roztažení vyvíjí tlak na sousední pružinu - a tyto sousední pružiny se rozpínají stejnou měrou a vyvíjí stejný tlak na každou další sousední pružinu - pak by síla, kterou na sebe pružiny navzájem působí, měla být symetrická a materiál by se neměl roztahovat nebo smršťovat.

Celý článek na UCONN

Image Credit: UCONN

-jk-