Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 12/2016 vyšlo tiskem 7. 12. 2016. V elektronické verzi na webu od 6. 1. 2017. 

Téma: Měření, měřicí přístroje a měřicí technika; Zkušebnictví a diagnostika

Hlavní článek
Lithiové trakční akumulátory pro elektromobilitu (2. část – dokončení)

Číslo 6/2016 vyšlo tiskem 5. 12. 2016. V elektronické verzi na webu od 5. 1. 2017.

Osvětlení interiérů
Seminář Interiéry 2016 – páté výročí
Součinnost bytového interiéru a osvětlení 

Normy, předpisy a doporučení
Nové normy pro osvětlení pozemních komunikací

Aktuality

Svítící fasáda FEL ČVUT nabídne veřejnosti interaktivní program s názvem Creative Colours of FEL Dne 13. prosince v 16.30 hodin se v pražských Dejvicích veřejnosti představí interaktivní…

Fakulta elektrotechnická je na špici excelentního výzkumu na ČVUT Expertní panely Rady vlády pro výzkum, vývoj, inovace (RVVI) vybraly ve II. pilíři…

Švýcaři v referendu odmítli uzavřít jaderné elektrárny dříve V referendu hlasovalo 45 procent obyvatel, z toho 54,2 procent voličů řeklo návrhu na…

Fakulta elektrotechnická ČVUT v Praze pořádá 25. 11. 2016 den otevřených dveří Fakulta elektrotechnická ČVUT v Praze pořádá 25. listopadu od 8.30 hodin Den otevřených…

Více aktualit

Vědci chtějí za pomoci solární energie vyrábět nové palivo

25.10.2012 | |

Vědci se s pomocí elektrické energie získané ze solárních panelů snaží vytvořit látku, která by mohla být skladována, a později využita buď jako zdroj elektrické energie, nebo jako palivo.

Nová technologie je inspirována fotosyntézou – procesem látkové přeměny, který probíhá v rostlinách. Voda je zde za pomoci energie ze slunečního světla rozkládána takovým způsobem, aby výsledek reakce mohl být uložen a později využit jako zdroj energie. V procesu vyvíjeném vědci se ale na rozdíl od fotosyntézy využívají umělé, člověkem vytvořené látky.
Výzkum přeměny solární energie v chemickou vede Yasuhiro Tachibana, profesor na Royal Melbourne Institute of Technology. „Stále se snažíme nalézt způsob, jak vyrábět molekulární paliva jako je vodík, v množství a s náklady, aby mohla konkurovat fosilním palivům“, říká Tachibana.

Klíčem ke zlepšení efektivity výroby by mohly být nové „nanomateriály“, a vytvoření účinného způsobu řízení celého procesu přeměny. „Poslední zjištění na poli nanotechnologií vedla ke slibným zlepšením v nákladovosti a účinnosti celého procesu“, řekl Tachibana. Dalším cílem proto bude vytvořit už hotové solární zařízení pro štěpení vody, které by ke svému provozu potřebovalo pouze sluneční světlo a mořskou vodu. Tyto zdroje jsou totiž na naší planetě k dispozici zdarma, řekl Tachibana.
Obrázek: vodík vyráběný v zařízení na rozklad vody na vodík a kyslík uložená na plovoucích pontonech, tankerech a v příbřežních elektrárnách. Elektrická energie potřebná k napájení celé infrastruktury pochází z obnovitelných zdrojů, jako je fotovoltaika, vítr nebo přílivová energie.

Obrázek: vodík vyráběný v zařízení na rozklad vody na vodík a kyslík uložená na plovoucích pontonech, tankerech a v příbřežních elektrárnách. Elektrická energie potřebná k napájení celé infrastruktury pochází z obnovitelných zdrojů, jako je fotovoltaika, vítr nebo přílivová energie. (časopis Nature)

Více například  zde:
http://www.nature.com/nphoton/journal/v6/n8/fig_tab/nphoton.2012.175_ft.html 
http://www.rmit.com.au/browse;ID=g5psih9zj86v1