Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 2/2019 vyšlo tiskem 13. 2. 2019. V elektronické verzi na webu 11. 3. 2019. 

Téma: Elektrické přístroje – spínací, jisticí, ochranné, signalizační a speciální

Hlavní článek
Perspektivní topologie výkonových měničů
Smart Cities (7. část)

Číslo 1/2019 vyšlo tiskem 4. 2. 2019. V elektronické verzi na webu 5. 3. 2019.

Veletrhy a výstavy
Pozvánka na výstavu SVĚTLO V ARCHITEKTUŘE
Prolight + Sound 2019: pojďte s dobou
Světlo na veletrhu For Arch 2018

Veřejné osvětlení
Světla měst a obcí 2018 – setkání u kulatého stolu

Aktuality

50. konferencia elektrotechnikov Slovenska SEZ-KES Vás pozýva na jubilejnú 50. konferenciu elektrotechnikov Slovenska, ktorá sa…

Do přípravy Národní strategie umělé inteligence se zapojí široká veřejnost Ministerstvo průmyslu a obchodu spustilo konzultaci s odbornou veřejností, firmami i…

Ještě větší FOR PASIV a FOR WOOD 2019 Sedmý veletrh nízkoenergetických, pasivních a nulových staveb FOR PASIV, který proběhne v…

Novým děkanem FEL ČVUT v Praze byl zvolen prof. Petr Páta V pátek 25. ledna se na Fakultě elektrotechnické ČVUT v Praze konalo 30. řádné zasedání…

Více aktualit

Suprakabel pro velkoměsta

10.02.2012 | |

V Německu odstartoval zajímavý projekt s názvem AmpaCity (záměrná shoda s anglickým slovem ampacity, které znamená ampérovou, resp. proudovou zatížitelnost). Koncern RWE a jeho partneři se chystají nahradit standardní (měděný) vysokonapěťový kabel o délce 1 km mezi dvěma transformačními stanicemi v německém městě Essenu (Severní Porýní-Vestfálsko) moderním řešením pro přenos velkého výkonu v přelidněných městech, a to supravodičovým kabelem. Jde o nejdelší instalaci suprakabelu na světě. Tento třífázový 10kV kabel s koncentrickým uspořádáním je dimenzován pro přenosový výkon 40 MW a vyrobí ho a dodá firma Nexans.

Obr. 1. Struktura supravodičového kabelu (foto: Nexans)

Technologický ústav v Karlsruhe (KIT – Karlsruher Institut für Technologie) v rámci projektu AmpaCity posoudí vhodnost materiálů pro supravodiče a jejich izolaci. V tomto projektu má být navíc zcela poprvé jako ochrana proti přetížení použita kombinace supravodičového kabelu s odporovým supravodivým omezovačem proudu, který dodá rovněž firma Nexans. Tomuto projektu předcházela podrobná studie ve výzkumných zařízeních KIT, při které byla pod odborným vedením výzkumníků z KIT a ve spolupráci s partnery projektu – firmami Nexans a RWE – analyzována technická proveditelnost a hospodárnost tohoto supravodičového řešení na napěťové hladině vysokého napětí. Podle této studie představují supravodičové kabely do budoucna ve stále hustěji osídlených aglomeracích jediné smysluplné a z ekologicko-ekonomického hlediska výhodné řešení přenosu elektrické energie ve velkoměstech.

Technická výhodnost supravodičových kabelů je dána vlastnostmi materiálu vodiče. Při teplotě přibližně –180 °C (chlazení je řešeno tekutým dusíkem) se tento materiál stává téměř ideálním vodičem, který je schopen teoreticky přenést minimálně stokrát větší proud než klasická měď. V praxi je supravodičový kabel schopen i přes integrovaný chladicí plášť běžně přenášet pětinásobný výkon, než by zvládl stejně velký kabel s měděnými vodiči, a to při mnohem menších elektrických ztrátách.

Suprakabel představuje moderní a efektivní techniku, neboť šetří materiálové i energetické zdroje. Odborníci předpokládají, že by tyto inovační suprakabely mohly v příštích letech v oblasti silovém přenosu elektrické energie ve velkoměstech postupně vytlačit klasické měděné kabely.

(Kl)