Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 2/2017 vyšlo tiskem 17. 2. 2017. V elektronické verzi na webu od 10. 3. 2017. 

Téma: Elektrické přístroje – spínací, jisticí, ochranné a signalizační; Přístroje pro inteligentní sítě

Hlavní článek
Atypický návrh výkonového stejnosměrného zdroje se středofrekvenčním transformátorovým filtrem rušivého napětí

Číslo 1/2017 vyšlo tiskem 7. 2. 2017. V elektronické verzi na webu od 7. 3. 2017.

Veletrhy a výstavy
Pozvánka na výstavu SVĚTLO V ARCHITEKTUŘE 2017 

Architekturní a scénické osvětlení
Světelný design v kostce – Část 28
Osvětlení spiegeltentu a jeho specifika

Aktuality

Chytré lampy PRE potvrdily zhoršenou smogovou situaci v Praze Chytré lampy PRE potvrdily v rámci svého pilotního provozu, že v Holešovicích a…

Jak se bydlí v pasivních domech, řeknou jejich majitelé na veletrhu FOR PASIV Další ročník veletrhu FOR PASIV, který je zaměřený na projektování a výstavbu…

Fakulta elektrotechnická ČVUT v Praze představí zájemcům o studium moderní techniku i její historii Fakulta elektrotechnická ČVUT v Praze pořádá v pátek 20. ledna od 8.30 hodin první…

Loňská výroba Temelína by stačila k pokrytí téměř roční spotřeby českých domácností Přesně 12,1 terawatthodin elektřiny (TWh) loni vyrobila Jaderná elektrárna Temelín. Je to…

Více aktualit

Robotičtí dravci navržení aby odháněli ptáky od letišť, polí a skládek

01.09.2014 | |

Existuje řada způsobů, jak odhánět ptáky od míst jako jsou letiště, farmy či skládky. Nejčastěji to bývají různé typy strašáků nebo poplašných signálů. Nico Nijenhuis vytvořil také jeden takový nástroj – pracuje na robotickém sokolovi, který však bude na nezvané ptáky působit dojmem, že se jedná o skutečného dravce. Doufá, že je jednou bude prodávat správám letišť a provozovatelům skládek pod názvem Clear Flight Solutions. V současnosti se slibnými výsledky testuje dálkově ovládané sokoly a orly. Do konce roku počítá s tím, že bude mít v nabídce plně autonomní roboty.

Vytvořit mechanický model napodobující ptáka se může zdát jednoduché, ale není. To už jen z toho důvodu, že dodnes pořádně nevíme, jak ptáci vlastně létají. Nerozumíme přesně tomu, co se z mechanického hlediska děje během letu s křídly. To, co ptáci se svými křídly provádějí je prostě tak složité, že to nelze jen tak snadno napodobovat.

Nijenhuis si proto musel ujasnit, které prvky letu by se vůbec měl snažit napodobit. Ukázalo se, že to je zejména pružnost křídel. Místo prostého máchání křídly v jednom kloubu se musí křídlo prohýbat v celé své délce s tím, jak se pohybuje vzduchem. Proto mají křídla svou zvláštní konstrukci a čím dále od spojení s tělem jsou, tím více se pěna, z níž jsou vyrobena, stává pružnou. Ve spojení se senzory a stabilizačním softwarem je poměrně přesvědčivé napodobení letu, což je důležité, protože ptáci by prý jinak nereagovali na plašení ..

Tělo roboptáků je z 3D tištěného kompozitního vláknitého materiálu na bázi nylonu barevného přímo již z tiskárny. Ten je lehký a přitom velmi pevný – pták může havarovat v 50 km/h a nic se mu nestane. Nijenhuis se nyní spojil se třemi dalšími studenty a dvěma výzkumnými pracovníky v oboru robotiky a pracují na autonomním systému, který snad dokončí do konce roku. Ten by měl být schopen vytyčit oblast, v níž má robot létat a nebo ji definovat během letu. Stačilo by pak ptáka vyslat do vzduchu a systém by se už postaral o zbytek.

Jedna skládka zaznamenala 75 % procentní pokles ptačích návštěv a ti co přicházejí i přes obletování robodravce jakou maximálně opatrní. Robotický sokol tedy rozhodně funguje. Je zároveň pádnějším argumentem, proč by se měli ptáci držet stranou, než občasný výbuch poplašňáku.

Původní článek na wired.com
Stránky Clear Flight Solutions