Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 11/2019 vyšlo tiskem 6. 11. 2019. V elektronické verzi na webu 2. 12. 2019. 

Téma: Elektrické rozváděče a rozváděčová technika; rozvodny

Hlavní článek
Příčina mechanického chvění těžních synchronních motorů Palašer a jeho odstranění

Číslo 5/2019 vyšlo tiskem 16. 9. 2019. V elektronické verzi na webu ihned.

Činnost odborných organizací
Mezinárodní konference SVĚTLO 2019 – 6. oznámení
Zúčastnili sme sa kongresu Medzinárodnej komisie pre osvetlenie CIE 2019 vo Washingtone
Odborný seminár SLOVALUX 2019

Veletrhy a výstavy
Inspirujte se boho stylem i designem Dálného východu na podzimním veletrhu FOR INTERIOR

Aktuality

Finále celorepublikové soutěže Energetická olympiáda proběhne na FEL ČVUT v Praze Fakulta elektrotechnická ČVUT v Praze pořádá v pátek 15. listopadu od 8.30 hodin Den…

Chystaná digitalizace stavebnictví pomůže zkvalitnit budovy a ušetřit miliardy Od roku 2022 bude muset být u všech nadlimitních veřejných zakázek v českém stavebnictví…

Co vozí energetici v autě? TETRIS CHALLENGE Co vše se vejde energetikům do auta, které používají metodu práce pod napětím (PPN) –…

ENERGO SUMMIT – vrcholná událost energetického sektoru 15. listopadu 2019 se na pražském výstavišti PVA EXPO PRAHA uskuteční již 5. ročník…

Více aktualit

První let robo-mouchy proběhl s jištěním, ale úspěšně

13.05.2013 | |

V Laboratoři robotiky na Harvardské univerzitě vzlétnul umělý hmyz. Exemplář je veliký jako půl kancelářské sponky a váží asi desetinu gramu.

Práce na robotu s tělem podobným hmyzímu zabrala výzkumníkům z Harvard School of Engineering and Applied Sciences (SEAS) a Wyss Institute for Biologically Inspired Engineering více než deset let.

Průhledná křídla robotu inspirovaného tělesnou stavbou mouchy provedou zhruba 120 máchnutí za vteřinu. Robot představuje naprosto hraniční výkon všech oblastí řídicích technologií. Každou jeho součást bylo třeba vymýšlet navrhnout tak, aby v tomto miniaturním a nesmírně přesném celku mohla pracovat s naprostou dokonalostí. I tak bylo třeba většinu z nich několikrát přepracovávat. Jako příklad můžeme vzít ústrojí, které pohybuje letovými orgány: pohyb křídel v tomto měřítku nemohou zajišťovat elektromotory ... místo nich zde jsou malé piezoelektrické pohony.

Jemné plastové závěsy vložené do těla z karbonových vláken zase slouží jako klouby. Každé z křídel pak v reálném čase řídí samostatný velice jemně vyladěný systém. V tomto měřítku totiž i mírná změna proudění vzduchu může mít značný vliv na dráhu letu a řídicí systém na ni musí reagovat co nejrychleji, aby robot zůstal stabilní.

O zvláštním způsobu práce s materiálem pro stavbu robotu a možných způsobech jeho využití se můžete dočíst ZDE