Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 10/2017 vyšlo tiskem 4. 10. 2017. V elektronické verzi na webu od 4. 10. 2017. 

Téma: Elektroenergetika; OZE; Palivové články; Baterie a akumulátory

Hlavní článek
Skladování elektrické energie
Elektrochemická impedanční spektroskopie akumulátorů

Číslo 5/2017 vyšlo tiskem 18. 9. 2017. V elektronické verzi na webu bude 18. 9. 2017.

Svítidla a světelné přístroje
MAYBE STYLE představuje LED designová svítidla německého výrobce Lightnet
TREVOS – nová svítidla pro průmysl i kanceláře
Kolik typů LED panelů vyrábí MODUS?
Inteligentní LED svítidlo RENO PROFI

Osvětlení interiérů
Světlo v bytovém interiéru – otázky a odpovědi

Aktuality

Soutěž o nejlepší realizovaný projekt KNX instalace Spolek KNX národní skupina České republiky, z. s. vyhlásil soutěž o nejlepší projekt…

Slovensko bude partnerskou zemí MSV 2018 Příští rok se chystají oslavy několika kulatých výročí včetně 100 let od založení…

ABB na MSV 2017 v Brně vystavuje stavební kameny továrny budoucnosti Společnost ABB na Mezinárodním strojírenském veletrhu 2017 v hale G2/30 představuje…

Výroční SIGNAL festival provede diváky po nových trasách i svou historií Festival světla SIGNAL divákům předvede 20 instalací od umělců z České republiky i…

Více aktualit

Origami robot se dokáže sám složit, předvádí originální kousky a je zcela rozložitelný

05.06.2015 | IEEE Spectrum | spectrum.ieee.org

Výzkumnící MIT představili na konferenci ICRA 2015 v Seattlu miniaturního origami robota, který se dokáže sám složit, umí chodit, plavat a v případě potřeby je kompletně rozložitelný.

Je to vůbec poprvé, kdy byl robot schopen demonstrovat tento cyklus a časem toho bude schopen i v lidském těle. Robot, vyrobený z magnetu a PVC vrstveného mezi laserem seříznuté strukturální vrstvy (polystyren nebo papír), váží 0,31 g a měří 1,7 cm. Robot se po zahřátí rozloží za necelou minutu a může se pohybovat rychlostí 3-4 m/s.

Origami robot se dokáže sám složit

„Motor“ robota je složen ze 2 částí: z neodymového magnetu, kolem kterého se robot poskládá a poté se vydá na cestu a ze čtyř magnetických cívek pod povrchem, které vytváří magnetické pole potřebné k pohybu. Magnetické pole se zapíná a vypíná na frekvenci 15 Hz. To způsobí, že magnet, se kterým je robot spojen, kmitá tam a zpět a robot kopíruje jeho pohyb. Při tomto pohybu se přední a zadní nohy robota střídavě dotýkají země a asymetrie designu - v kombinaci se záměrně vystředěnou rovnováhou - způsobuje pohyb robota. Nic z toho nefunguje, dokud se robot nerozloží.

Výhodou použití robota namísto prostého magnetu je schopnost plavat, stejně jako efektivnější vykonávání úkonů, jako je pohyb s předměty nebo kopání. Chcete-li zapůsobit, můžete proces skládání rozložit na více úrovní. Stačí robota mírně zahřát a ten se poskládá do určitého tvaru. Zvýšení teploty aktivuje druhý stupeň a robot opět změní tvar. Po dosloužení se robot jednoduše rozloží v nádobě s acetonem. Vše co po něm zbude, je magnet. Strukturální vrstvu robota je možné vyrobit z materiálu rozložitelného ve vodě. Vědci již pracují na integraci senzorů přímo do robota, podle kterých stroj vyhodnotí, kdy může konat nezávisle. A bude toho schopen i v lidském těle.

Celý článek na IEEE Spectrum

Image credit: Evan Ackerman, IEEE Spectrum

-jk-