Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 4/2018 vyšlo tiskem 18. 4. 2018. V elektronické verzi na webu od 15. 5. 2018. 

Téma: Elektroinstalace; Inteligentní budovy; IoT; HVAC

Hlavní článek
Smart Cities (1. část)

Číslo 2/2018 vyšlo tiskem 16. 3. 2018. V elektronické verzi na webu bude ihned.

Veletrhy a výstavy
Interiérová elita opět po roce v Letňanech

Svítidla a světelné přístroje
Nouzové osvětlení
Budoucnost průmyslového osvětlení se jmenuje INNOVA
Svítidlo GOLY – praktické svítidlo high bay“
McLED® – značka kvalitního LED osvětlení
Svítidlo VOLGA EU – naše volba pro Evropu

Aktuality

Mezinárodní strojírenský veletrh oslaví šedesátku s novým vizuálem Ozubené kolo, modrá a červená barva, šipky a uprostřed písmena MSV - česká zkratka,…

ČEPS, a.s., hospodařila vloni se ziskem přes 2,8 miliardy Akciová společnost ČEPS vykázala za rok 2017 zisk 2,897 miliardy před zdaněním. K nárůstu…

ABB v České republice buduje síť rychlonabíjecích stanic Síť rychlonabíjecích stanic pro elektrická vozidla se v České republice díky technologiím…

60. ročník Mezinárodního strojírenského veletrhu Zapište si do kalendářů 1. – 5. října 2018. V tomto termínu se totiž na brněnském…

Více aktualit

Nový materiál umožní výrobu ultratenkých solárních panelů

07.08.2014 | |

Studenti z Technické univerzity ve Vídni zkombinovali dva polovodičové materiály, z nichž každý obsahuje pouze tři vrstvy atomů. Tento nový materiál umožní výrobu nového typu solárních panelů, které budou extrémně tenké, poloprůhledné a tvarově přizpůsobivé. 

Studenty před několika měsíci vyvinutá ultratenká vrstva z krystalů fotoaktivního selenidu wolframičitého byla nedávno úspěšně zkombinována s vrstvou sulfidu molybdenu. Rakušané tak dali vzniknout materiálu, který by mohl být za nízkou pořizovací cenu využitelný v solárních článcích.

Podle studentů bylo největší výzvou spojit oba materiály tak, aby vytvořily atomicky jednolitou plochu. Pokud by mezi vrstvami zůstaly ještě nějaké jiné molekuly, nedocházelo by k přímému kontaktu a článek by nemohl fungovat optimálně. Dokonalého spojení vývojový tým dosáhnul zahříváním daných vrstev ve vakuu a jejich následným přiložením k sobě v běžné atmosféře. Zbývající molekuly vody byly odstraněny opakovaným zahříváním.

Vzniklý materiál je poloprůsvitný, proto by se mohl hodit na stavbu různých budov, kde se nyní používá sklo. Část světla by prošla materiálem dovnitř a byla přeměněna na elektrickou energii. Díky malé tloušťce je materiál zároveň velmi pružný a lehký (300 čtverečních metrů váží pouhý jeden gram). Nyní tým pracuje na přidání více vrstev, což sice sníží průhlednost, ale zvýší výkon výroby elektřiny.

…více informací ZDE

Foto: Technische Universität Wien