Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 1/2019 vyšlo tiskem 16. 1. 2019. V elektronické verzi na webu 12. 2. 2019. 

Téma: Elektrotechnologie; Materiály pro elektrotechniku; Elektroinstalační materiál

Hlavní článek
Elektricky vodivá lepidla pro elektrotechniku
Smart Cities (6. část)

Číslo 6/2018 vyšlo tiskem 3. 12. 2018. V elektronické verzi na webu 4. 1. 2019.

Svítidla a světelné přístroje
Modulární světlomety Siteco
Dekorativní svítidlo PRESBETON H-E-X z ucelené řady městského mobiliáře
LED svítidla ESALITE – revoluce v oblasti průmyslového osvětlení

Denní světlo
O mediánové osvětlenosti denním světlem
Odborný seminář Denní světlo v praxi

Aktuality

Personální inzerce Společnost AZ Elektrostav, a.s., z Nymburka, a její dceřiná společnost ELTRAF, a.s., se…

Fórum automatizace 2019 ukáže perspektivy a úskalí digitalizace Cesta k digitalizaci v průmyslu, infrastruktuře, dopravě a dalších oborech může být i…

Ing. Martin Durčák zvolen předsedou představenstva ČEPS, a.s. Představenstvo společnosti ČEPS zvolilo na svém mimořádném zasedání předsedou…

ČEZ Distribuce se cvičně bránila kybernetickému útoku Hrozba kybernetických útoků je v poslední době stále častěji skloňované téma. Hned…

Více aktualit

Nový materiál umožní výrobu ultratenkých solárních panelů

07.08.2014 | |

Studenti z Technické univerzity ve Vídni zkombinovali dva polovodičové materiály, z nichž každý obsahuje pouze tři vrstvy atomů. Tento nový materiál umožní výrobu nového typu solárních panelů, které budou extrémně tenké, poloprůhledné a tvarově přizpůsobivé. 

Studenty před několika měsíci vyvinutá ultratenká vrstva z krystalů fotoaktivního selenidu wolframičitého byla nedávno úspěšně zkombinována s vrstvou sulfidu molybdenu. Rakušané tak dali vzniknout materiálu, který by mohl být za nízkou pořizovací cenu využitelný v solárních článcích.

Podle studentů bylo největší výzvou spojit oba materiály tak, aby vytvořily atomicky jednolitou plochu. Pokud by mezi vrstvami zůstaly ještě nějaké jiné molekuly, nedocházelo by k přímému kontaktu a článek by nemohl fungovat optimálně. Dokonalého spojení vývojový tým dosáhnul zahříváním daných vrstev ve vakuu a jejich následným přiložením k sobě v běžné atmosféře. Zbývající molekuly vody byly odstraněny opakovaným zahříváním.

Vzniklý materiál je poloprůsvitný, proto by se mohl hodit na stavbu různých budov, kde se nyní používá sklo. Část světla by prošla materiálem dovnitř a byla přeměněna na elektrickou energii. Díky malé tloušťce je materiál zároveň velmi pružný a lehký (300 čtverečních metrů váží pouhý jeden gram). Nyní tým pracuje na přidání více vrstev, což sice sníží průhlednost, ale zvýší výkon výroby elektřiny.

…více informací ZDE

Foto: Technische Universität Wien