Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 11/2019 vyšlo tiskem 6. 11. 2019. V elektronické verzi na webu 2. 12. 2019. 

Téma: Elektrické rozváděče a rozváděčová technika; rozvodny

Hlavní článek
Příčina mechanického chvění těžních synchronních motorů Palašer a jeho odstranění

Číslo 5/2019 vyšlo tiskem 16. 9. 2019. V elektronické verzi na webu ihned.

Činnost odborných organizací
Mezinárodní konference SVĚTLO 2019 – 6. oznámení
Zúčastnili sme sa kongresu Medzinárodnej komisie pre osvetlenie CIE 2019 vo Washingtone
Odborný seminár SLOVALUX 2019

Veletrhy a výstavy
Inspirujte se boho stylem i designem Dálného východu na podzimním veletrhu FOR INTERIOR

Aktuality

Finále celorepublikové soutěže Energetická olympiáda proběhne na FEL ČVUT v Praze Fakulta elektrotechnická ČVUT v Praze pořádá v pátek 15. listopadu od 8.30 hodin Den…

Chystaná digitalizace stavebnictví pomůže zkvalitnit budovy a ušetřit miliardy Od roku 2022 bude muset být u všech nadlimitních veřejných zakázek v českém stavebnictví…

Co vozí energetici v autě? TETRIS CHALLENGE Co vše se vejde energetikům do auta, které používají metodu práce pod napětím (PPN) –…

ENERGO SUMMIT – vrcholná událost energetického sektoru 15. listopadu 2019 se na pražském výstavišti PVA EXPO PRAHA uskuteční již 5. ročník…

Více aktualit

Nový materiál umožní výrobu ultratenkých solárních panelů

07.08.2014 | |

Studenti z Technické univerzity ve Vídni zkombinovali dva polovodičové materiály, z nichž každý obsahuje pouze tři vrstvy atomů. Tento nový materiál umožní výrobu nového typu solárních panelů, které budou extrémně tenké, poloprůhledné a tvarově přizpůsobivé. 

Studenty před několika měsíci vyvinutá ultratenká vrstva z krystalů fotoaktivního selenidu wolframičitého byla nedávno úspěšně zkombinována s vrstvou sulfidu molybdenu. Rakušané tak dali vzniknout materiálu, který by mohl být za nízkou pořizovací cenu využitelný v solárních článcích.

Podle studentů bylo největší výzvou spojit oba materiály tak, aby vytvořily atomicky jednolitou plochu. Pokud by mezi vrstvami zůstaly ještě nějaké jiné molekuly, nedocházelo by k přímému kontaktu a článek by nemohl fungovat optimálně. Dokonalého spojení vývojový tým dosáhnul zahříváním daných vrstev ve vakuu a jejich následným přiložením k sobě v běžné atmosféře. Zbývající molekuly vody byly odstraněny opakovaným zahříváním.

Vzniklý materiál je poloprůsvitný, proto by se mohl hodit na stavbu různých budov, kde se nyní používá sklo. Část světla by prošla materiálem dovnitř a byla přeměněna na elektrickou energii. Díky malé tloušťce je materiál zároveň velmi pružný a lehký (300 čtverečních metrů váží pouhý jeden gram). Nyní tým pracuje na přidání více vrstev, což sice sníží průhlednost, ale zvýší výkon výroby elektřiny.

…více informací ZDE

Foto: Technische Universität Wien