Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 3/2019 vyšlo tiskem 11. 3. 2019. V elektronické verzi na webu ihned. 

Téma: Amper 2019 – 27. mezinárodní elektrotechnický veletrh

Hlavní článek
Smart Cities (8. část)

Číslo 2/2019 vyšlo tiskem 15. 3. 2019. V elektronické verzi na webu ihned.

Architekturní a scénické osvětlení
Architekturní osvětlení hradu Bečov nad Teplou
Světelný design v kostce (41)
Analýza světelného obrazu trochu více teoreticky

Denní světlo
Největší chyby v návrhu denního osvětlení budov

Aktuality

Svítící motocyklistické oblečení pro zvýšenou bezpečnost na silnicích Výrobce motorkářského oblečení Held se spojil s firmou Osram s cílem zlepšit viditelnost…

Semináre pre revíznych technikov SEZ-KES Vás pozýva na monotematický seminár pre revíznych technikov „Teoretické a…

Největší větrná elektrárna v Česku pomohla skupině Portiva překonat rekord Energetická divize investiční skupiny Portiva loni dokázala vyrobit nejvíce elektrické…

Světlo v architektuře - 6. ročník specializované výstavy V březnu budou zářit nejen hvězdy, ale i svítidla na výstavě SVĚTLO V ARCHITEKTUŘE!

Více aktualit

Nový materiál umožní výrobu ultratenkých solárních panelů

07.08.2014 | |

Studenti z Technické univerzity ve Vídni zkombinovali dva polovodičové materiály, z nichž každý obsahuje pouze tři vrstvy atomů. Tento nový materiál umožní výrobu nového typu solárních panelů, které budou extrémně tenké, poloprůhledné a tvarově přizpůsobivé. 

Studenty před několika měsíci vyvinutá ultratenká vrstva z krystalů fotoaktivního selenidu wolframičitého byla nedávno úspěšně zkombinována s vrstvou sulfidu molybdenu. Rakušané tak dali vzniknout materiálu, který by mohl být za nízkou pořizovací cenu využitelný v solárních článcích.

Podle studentů bylo největší výzvou spojit oba materiály tak, aby vytvořily atomicky jednolitou plochu. Pokud by mezi vrstvami zůstaly ještě nějaké jiné molekuly, nedocházelo by k přímému kontaktu a článek by nemohl fungovat optimálně. Dokonalého spojení vývojový tým dosáhnul zahříváním daných vrstev ve vakuu a jejich následným přiložením k sobě v běžné atmosféře. Zbývající molekuly vody byly odstraněny opakovaným zahříváním.

Vzniklý materiál je poloprůsvitný, proto by se mohl hodit na stavbu různých budov, kde se nyní používá sklo. Část světla by prošla materiálem dovnitř a byla přeměněna na elektrickou energii. Díky malé tloušťce je materiál zároveň velmi pružný a lehký (300 čtverečních metrů váží pouhý jeden gram). Nyní tým pracuje na přidání více vrstev, což sice sníží průhlednost, ale zvýší výkon výroby elektřiny.

…více informací ZDE

Foto: Technische Universität Wien