Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 6/2017 vyšlo tiskem 7. 6. 2017. V elektronické verzi na webu od 26. 6. 2017. 

Zdůrazněné téma: Točivé el. stroje; Pohony a výkonová elektronika; Měniče frekvence; Elektromobilita

Hlavní článek
Použití programovatelných logických obvodů v elektrických pohonech
Stejnosměrné elektrické stroje s permanentními magnety

Číslo 3/2017 vyšlo tiskem 9. 6. 2017. V elektronické verzi na webu bude 10. 7. 2017.

Světelné zdroje
Terminologie LED světelných zdrojů 

Denní světlo
Denní osvětlení velkých obytných místností
Svetelnotechnické posudzovanie líniových stavieb

Aktuality

Startuje hlasování veřejnosti o vítězích 9. ročníku ekologické soutěže E.ON Energy Globe V Praze byly 20. 6. 2017 slavnostně představeny nominované projekty 9. ročníku prestižní…

Nejnovější monopost týmu ČVUT eForce FEE Prague Formula se představil na Václavském náměstí Dne 16. června se v dolní části Václavského náměstí prezentoval tým Fakulty…

IQRF Summit 2017 svědkem reálných IoT aplikací Akce zaměřená na reálná řešení v oblasti chytrých měst, budov, domácností, transportu,…

Konference Internet a Technologie 17 Sdružení CZ.NIC, správce české národní domény, si Vás dovoluje pozvat na již tradiční…

Více aktualit

Nový algoritmus umožnil gepardovi z MIT běhat i skákat

19.09.2014 | |

Charakteristickými vlastnostmi geparda jsou rychlost a obratnost. Tato šelma je nejrychlejším zvířetem žijícím na souši: za pouhých pár vteřin dokáže zrychlit až na 60 mil za hodinu. Aby dosáhnul co nejvyšší rychlosti, používá gepard své nohy v párech vykonávajících stejný pohyb. Vědci z MIT nyní vyvinuli algoritmus který běh geparda napodobuje, a úspěšně ho implementovali do svého robotu - elegantního, čtyřnohého zařízení sestaveného z ozubených kol, baterií a elektrických motorů, vážícího asi tolik, co jeho kočkovitý protějšek. Tým vzal nedávno robota na "vycházku" na Killian Court MIT, kde ho nechal prohánět se do sytosti po trávníku.

Při pokusech v laboratoři robot dosahoval až 10 mil za hodinu a v běhu byl schopen pokračovat i když mu do cesty přišla překážka. Výzkumníci z MIT odhadují, že by aktuální verze robota mohla být schopna běhat rychlostí až 30 mil v hodině.

Principem algoritmu pro řízení tohoto "cvalu" je, aby každá z nohou robota byla schopna vyvinout přesně nadávkované množství síly ve zlomku sekundy, během které se dotýká země. To dovoluje udržovat či zvyšovat rychlost: obecně platí, že čím vyšší požadovaná rychlost je, tím větší sílu je třeba použít k odrazu robotu. Přizpůsobením silové báze je gepard-bot schopen zvládnout i náročnější terén. V experimentech na běžeckém pásu tým zjistil, že robot umí reagovat na drobné nerovnosti. Svou rychlost si dokázal zachovat, i když překonával pěnovou překážku.

Většina robotů je pomalá a těžká, a tak nemohou ovlivnit vynaloženou sílu v situacích, kdy se pohybují vysokou rychlostí. Gepard z MIT je zvláštní právě tím, že může ovládat sílový profil i ve velmi krátkých časových úsecích, po nichž následuje tvrdý dopad na zem. To dodává robotu potřebnou obratnost. Dynamiku robotu propůjčuje speciálně navržený elektrický motor s vysokým krouticím momentem, navržený také na MIT. Kombinace těchto speciálních elektrických motorů, zvláštního řídicího systému a na zakázku navržených, přírodou inspirovaných nohou, umožňuje kontrolu síly, aniž by bylo nutné se spoléhat na senzory instalované v nohách.

Více na stránkách MIT