Pokračujeme v díle těch,
kteří byli první.

Aktuální vydání

Číslo 7/2019 vyšlo tiskem 26. 6. 2019. V elektronické verzi na webu 26. 7. 2019. 

Téma: Kabely, vodiče a kabelová technika; Nářadí, nástroje a zařízení pro práci s kabely

Hlavní článek
Správa aktiv a potřeba diagnostiky v Průmyslu 4.0

Číslo 4/2019 vyšlo tiskem 29. 7. 2019. V elektronické verzi na webu 29. 8. 2019.

Světelně-technická zařízení
Foxtrot řídí nové sídlo asociace barmanů
Dynamické osvětlení kaple Anděla Strážce v Sušici

Příslušenství osvětlovacích soustav
Bezpečnost, úspornost a komfort s KNX
Celosvětově první LED spínaný zdroj s rozhraním KNX od výrobce MEAN WELL
KNX – systém s budoucností
Schmachtl – konektorová instalace gesis

Aktuality

Nový pobočný spolek ČSO – region Praha Po mnoha letech existence České společnosti pro osvětlování byl v červnu tohoto roku…

Digitální továrna 2.0 na MSV 2019 Digitální továrna 2.0 je jedním z hlavních témat Mezinárodního strojírenského veletrhu…

Historicky nejvyšší grant Evropské unie dostal česko-slovenský energetický projekt ACON Společnosti E.ON Distribuce a Západoslovenská distribuční (ZSD) získaly od Evropské…

Viceprezidentem asociace ENTSO-E zvolen člen představenstva ČEPS, a.s., Zbyněk Boldiš Zbyněk Boldiš, člen představenstva ČEPS, a.s., byl zvolen do funkce viceprezidenta…

Více aktualit

Nová teorie možná dovolí dosáhnout supravodivosti za pokojové teploty

09.12.2013 | |

U vysokoteplotních supravodičů vědci popsali řadu zvláštních vlastností, které dosud nedokázali dát do vzájemných souvislosti. Nyní Séamus Davis, profesor fyziky z Cornellovy Univerzity a Dung-Hai Lee, profesor fyziky na Univerzitě v kalifornském Berkeley oznámili, že u všech těchto doprovodných jevů, ale také u supravodivosti samotné, lze určit jednu společnou příčinu. Navíc přišli s vysvětlením, proč se projevuje v tolika různých podobách. Teorie by mohla být prvním krokem k novému typu supravodičů, fungujících za vyšších teplot. To by přineslo revoluci do elektrotechniky, protože by pak bylo možné vyrábět výkonnější motory a generátory využívající bezztrátového přenosu energie.

Supravodivost je jev, při němž proud prochází vodičem s nulovým odporem a proto nedochází k jeho ztrátám. Poprvé byla supravodivost popsána v kovech zchlazených až téměř k absolutní nule. Nyní však složité krystaly mědi, železa a některých jiných kovů obohacené stopovými prvky vykazují supravodivé vlastnosti i za teplot okolo 150 stupňů Kelvina (tzn. 150 stupňů Celsia nad absolutní nulou). Profesor Davis posledních deset let zkoumal tyto materiály v prostředí, kde byly naprosto odizolovány od vibrací, takže mohl pod mikroskopem pozorovat pohyby na jejich povrchu i na vzdálenost menší než je velikost jediného atomu. Objevil několik vzájemně propojených stavů těchto supravodičů.

Elektrony, které vytvoří do sebe zapadající páry s opačným spinem, se chovají magneticky neutrálně a jsou schopny se materiálem pohybovat bez odporu. Lee a Davis toto nazývají „antiferomagnetickou“ interakcí a tvrdí, že se jedná o univerzální příčinu supravodivosti. Že se makroskopicky projevuje u různých materiálů jinak, je prý dáno rozdílnými úrovněmi energií elektronů v jednotlivých materiálech.
Vysokoteplotní supravodiče jsou tvořeny pravidelnými krystaly, v nichž se stále znovu opakuje tatáž struktura atomů. Čím vyšší je teplota, tím více se atomy pohybují - elektronové páry se rozpojí a materiál ztratí supravodivé vlastnosti. Kdyby se podařilo vytvořit materiál, kde budou elektrony držet absolutně pevně, bylo by možné supravodivosti dosáhnout i za pokojové teploty. Matematicky prý lze s pomocí této teorie také popsat, jakou krystalickou strukturu měl tento materiál měl mít. Nová jednotná teorie supravodivosti také dokáže předpovědět stavy, v nichž se supravodivé materiály na bázi mědi, železa i některých jiných kovů budou nacházet.

Celý článek na phys.org
Foto: výzkumný tým prof. Davise